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Abstract

This paper addresses the problem of autocalibration, which is a critical step in existing uncalibrated structure from motion al-
gorithms that utilize an initialization to avoid the local minima in metric bundle adjustment. Currently, all known direct (not
non-linear) solutions to the uncalibrated structure from motion problem solve for a projective reconstruction that is related to metric
by some unknown homography, and hence a necessary step in obtaining a metric reconstruction is the subsequent estimation of the
rectifying homography, known as autocalibration. Although autocalibration is a well-studied problem, previous approaches have
relied upon heuristic objective functions, and have a reputation for instability. We propose a maximum likelihood objective and
show that it can be implemented robustly and efficiently, and often provides substantially greater accuracy, especially when there
are fewer views or greater noise.
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1. Introduction

This paper addresses the general problem of reconstructing,
from a collection of corresponding image points identified in
uncalibrated images, all of the camera parameters (position, ori-
entation, focal length, etc) and 3D coordinates of points in the
scene. This problem is most often referred to as uncalibrated
structure from motion (SFM).

A metric reconstruction is one that differs from the true con-
figuration only by the choice of coordinate system; in other
words, there is some unknown rotation, translation and scale
[1]. It is well known that metric reconstruction is not possi-
ble from projective constraints alone [1–3] because the solution
is ambiguous up to multiplication by some arbitrary homog-
raphy. Thus, a reconstruction obtained from projection con-
straints alone is referred to as a projective reconstruction.

Given any additional constraints on the intrinsic camera pa-
rameters (e.g., that the images are not skewed, that pixel aspect
ratio is known, that the center of projection is in the center of
the image, or that multiple images were produced by the same
physical camera), the ambiguity can be resolved. In practice,
some of these constraints will always be available. However,
incorporating these constraints directly into an initial estimate
is difficult: an efficient solution is only possible in the simplest
minimal case of two views with fully calibrated cameras [4].
A more general solution for two uncalibrated cameras was re-
cently proposed in Hartley and Kahl [5], although the time com-
plexity of this latter solution was prohibitively high.

In contrast, techniques for computing a projective recon-
struction are much more efficient, so the usual approach is to
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compute an initial projective reconstruction minimally or lin-
early. This initial projective solution can be refined to a max-
imum likelihood (ML) projective reconstruction using projec-
tive bundle adjustment [1, 6, 7], which can be multiplied by
the rectifying homography to yield an initial metric solution,
and finally refined to a maximum likelihood metric reconstruc-
tion using metric bundle adjustment. The estimation of the rec-
tifying homography is known as autocalibration (a.k.a. self-
calibration).

In projective bundle adjustment, camera views are param-
eterized by projection matrices and the projection equation is
simple, with the only nonlinearity being due to the perspective
division. The basin of attraction for projective bundle adjust-
ment is relatively large, and convergence is fast and reliable.
In contrast, the presence of rotation matrices significantly com-
plicates the projection equation in metric bundle adjustment,
making the linearized update approximations less accurate. As
a result, we observe a much smaller basin of attraction with less
reliable convergence in metric bundle adjustment. Thus, even
when an initial metric estimate is available, one may still prefer
to do bundle adjustment in projective space in order to avoid
local minima, and this would necessitate the use of autocalibra-
tion to map the result back into a metric space.

A plethora of approaches to autocalibration have been pre-
sented in the literature (see Section 1.1), but autocalibration has
a reputation for instability, and obtaining robust results in the
presence of realistic levels of measurement noise can often be
difficult. This has motivated a recent trend towards approaches
that use more computationally expensive global optimization
methods, under the assumption that the instabilities are due to
getting stuck in local minima. However, we will show that
the heuristic objectives that are optimized by these global ap-
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proaches are still fundamentally sensitive to noise.
In this paper, we formulate a maximum likelihood objective

for autocalibration and show that it can be optimized efficiently
and robustly. Using the maximum likelihood method avoids
the sensitivity to noise and can give considerably more accurate
results, especially for small numbers of views or high levels
of relative measurement error (equivalent to more distant point
clouds) where the autocalibration problem is more difficult.

We begin by summarizing previous autocalibration ap-
proaches in Section 1.1, and then derive our maximum likeli-
hood objective in Section 2. A method for efficient optimiza-
tion is described in Section 3. In Section 4 we devise a frame-
work for objective evaluation of autocalibration performance,
and identify a set of representative autocalibration algorithms to
compare against. The results of our experiments are presented
in Section 5, demonstrating the efficiency, robustness and qual-
ity of the proposed ML method, with some concluding remarks
in Section 6.

Finally, we refer the interested reader to the appendix, where
we explain the geometric relationships between all previous au-
tocalibration constraints in Appendix B, and show that all pre-
vious constraints are enforced by our ML method. In Appendix
A we provide insight into the fundamental instability and limi-
tations behind the heuristic maximum a priori objectives (not to
be confused with maximum likelihood), which are considered
the current state of the art.

1.1. Background

The first known method of autocalibration was based on the
Kruppa equations [8–11], now understood to be an algebraic
representation of the correspondence of epipolar lines tangent
to the dual image of the absolute conic (DIAC).

It was shown in Huang and Faugeras [12] that an equivalent
constraint to the Kruppa equations is that the essential matrix
between any view pair must have two equal non-zero singular
values, called the rigidity constraint. This is the fundamental
principle behind several autocalibration approaches that theo-
retically work for two views when focal length is the only un-
known [3, 13–16], although they are highly sensitive to noise.

When more than two views are considered, autocalibration
via the Kruppa equations requires finding the simultaneous so-
lutions to many quadratic equations, which has not been re-
garded as a promising approach [1], but has been attempted us-
ing homotopy continuation [17], nonlinear methods [18, 19],
and more recently using globally convergent interval analysis
[20]. Because the Kruppa equations do not enforce all of the
calibration constraints that are now understood, such as the
common support plane for the plane at infinity, these methods
are subject to singularities that can lead to instabilities.

In Pollefeys et al. [21], the modulus constraint on the plane at
infinity was introduced, which is complementary to the Kruppa
equations because it enforces constraints on the common plane
at infinity without enforcing constraints on the DIAC. A unify-
ing framework for these entities was presented with the absolute
dual quadric (ADQ) [22], a fixed entity in space that encodes
for both the plane at infinity and absolute dual conic (ADC)

and projects to the DIACs. The ADQ is useful because all au-
tocalibration constraints can be translated onto it.

The ADQ can be estimated using linear and nonlinear least
squares [1, 22–25], sometimes weighted according to prior as-
sumptions as in Pollefeys et al. [26]. Unfortunately, both of
these variations are often unstable in practice [14]. It has been
commented [27] that the main reason for instability of the linear
method is that the rank and positive-semidefinite constraints of
the ADQ are not enforced. However, we believe that the greater
issue with the linear method is that the constraint equations do
not directly correspond to the parameters they are intended to
constrain in the presence of noise.

The nonlinear method has no singularities and enforces all
known constraints, but still does not have any geometric mean-
ing [1, p. 467] and frequently produces unstable results in prac-
tice. We speculate from the recent trend towards more global
approaches that minimize essentially the same cost function
that the instability of the nonlinear method has been largely at-
tributed to difficulties in obtaining a good initialization.

For example, in Hartley’s stratified approach [28], chirality
constraints [29] are used to solve for a finite bounding vol-
ume for the plane at infinity and then this space is explored
with a brute force search. From each candidate location, the
infinite homography constraint is used to linearly estimate the
ADC from any desired calibration constraints, the best plane
is taken as the one that minimizes the least squares residual,
and finally the result is improved nonlinearly. Unfortunately,
this brute force search can be slow, and we have observed that
the minimum is often so pointlike that the basin of attraction is
not reliably found using any reasonably spaced discretization.
Additionally, it has been pointed out [30] that a single outlier
can cause the chirality constraints to have no solution, or to not
contain the correct solution.

More recently, the issue of discretization has been addressed
by globally convergent methods. For example, interval analysis
(IA) with branch and bound was used to minimize a heuristic
based on the essential matrix constraint in Fusiello et al. [20].
Unfortunately, the method was not very efficient, having com-
putation times of about 1.5 hours for a problem with 40 views.
IA was used again in Bocquillon et al. [27], but the parame-
terization that was used only works for constant focal length
and does not evenly distribute error. Computation times were
improved in this latter method, but were still on the order of a
minute for 20 views, which is too slow for many applications.

Under the constraint of zero skew (which can always be as-
sumed in practice) and known principal point (which can be
guessed but is often not known exactly), semidefinite program-
ming was used to globally minimize a heuristic cost function in
Agrawal [31], which was extended with a brute force search for
principal point in Agrawal [32]. These methods enforced the in-
ternal ADQ constraints, but neglected the constraints on aspect
ratio and always assumed that principal point is constant, which
makes them applicable to video but not photo collections.

Convex relaxation was used with branch and bound to iden-
tify the plane at infinity that globally minimizes a heuristic cost
associated with the modulus constraint in the recent stratified
approach of Chandraker et al. [33, 34], but the heuristic is not
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ideal because it does not consider constraints on the DIAC in
the search for the plane at infinity. Similar techniques were
used to estimate the ADQ directly using all known constraints
in Chandraker et al. [35], which makes it perhaps the most gen-
erally applicable global approach.

In general, the globally convergent approaches are very diffi-
cult to implement and not very efficient. As an alternative, the
dual stratified approach of estimating the plane at infinity from
known calibration matrix, first proposed in Bougnoux [14], has
recently been revived with a closed form solution from a view
pair in Gherardi and Fusiello [36]. The advantage of the dual
stratified approach is that prior knowledge may be used to re-
strict the search into a very narrow plausible region, rather than
exhaustively searching through all of parameter space for the
plane at infinity. This leads to an algorithm that is simple, fast
and robust. However, it lacks in precision, and still minimizes
a heuristic objective that is not geometrically meaningful. As a
result, attempting to further minimize the heuristic using non-
linear methods can result in divergence.

The fundamental limitation of all previous algorithms is that
the objective being minimized is a heuristic with no particular
geometric meaning, and these heuristics do not always work as
well as one would hope. This becomes especially apparent for
projective reconstructions with greater noise (or equivalently,
more distant geometry) and for short reconstructions which are
commonly on the verge of a Critical Motion Sequence (CMS)
[27] for which the problem is ill-posed.

Currently, the most meaningful heuristic objectives mini-
mize a weighted sum of squared errors between the rectified
intrinsic parameters and an assumed mean of zero. If calibra-
tion parameters are all independent and normally distributed,
then the homography that minimizes this error is a maximum
a priori rectifying homography [30], where the weights (cho-
sen heuristically) implicitly correspond to inverse variance of
some assumed prior distribution. However, the tenability of this
prior model has never been justified, and it has been primarily
adopted out of convenience as a substitute for likelihood. In
the next section, we show that in fact likelihood can be used
as the objective, and we will present an algorithm to maximize
likelihood robustly and efficiently.

2. Maximum Likelihood Autocalibration

Consider a set of n homogeneous structure points X̄i, i =

1 . . . n in the projective space P3, viewed by a set of m cameras
having 3 × 4 projection matrices

P̄ j = K̄ j[R̄ j|t̄ j], j = 1 . . .m, (1)

where R̄ j is a rotation matrix and K̄ j is a non-singular upper
triangular calibration matrix with positive diagonal elements.
Note that any projection matrix can be uniquely factored into
these components [37, p.230]. We refer to the combined set of
this information as the true configuration, denoted by

Θ̄ = { X̄i, P̄ j|∀i, j }, (2)

and any estimate Θ̂ of the configuration from some measure-
ments as a reconstruction of the configuration.

The perspective projection of a homogeneous structure point
X ∈ P3 as viewed by a camera with projection matrix P is ac-
complished by multiplication, yielding a homogeneous image
point x ∈ P2,

x ∝ PX. (3)

Let the measured coordinates of the image of the ith struc-
ture point in the jth image be denoted by x̃ j

i . If we assume,
as is commonly done [38], that measurement error is normally
distributed with standard deviation σ, then the probability (or
likelihood) of a measurement is

P(x̃ j
i |Θ̄) =

1
2πσ2 exp

(
−d(x̃ j

i , x̄
j
i )

2/(2σ2)
)

, (4)

where x̄ j
i is the true image of X̄i in the jth view, and d(a,b) is

the Euclidean distance between the inhomogeneous points rep-
resented by homogeneous points a and b. The log-probability
of a measurement is

log P(x̃ j
i |Θ̄) = − 1

2σ2 d(x̃ j
i , x̄

j
i )

2 + log
(
1/(2πσ2)

)︸            ︷︷            ︸
constant

, (5)

and therefore the maximum likelihood (ML) projective recon-
struction Θ̂ML from measurements {x̃ j

i } is given by

Θ̂ML = argmax
Θ

∏
i, j

P(x̃ j
i |Θ) (6)

= argmax
Θ

− 1
2σ2

∑
i, j

d(x̃ j
i , x

j
i )

2 (7)

= argmin
Θ

∑
i, j

d(x̃ j
i , x

j
i )

2. (8)

The distance d(x̃ j
i , x

j
i ) is known as reprojection error, so the

ML reconstruction can be found by minimizing the sum of
squared reprojection errors. This nonlinear minimization is
known as bundle adjustment [1, 6, 7], and can be parameter-
ized either in terms of projection matrices, or more explicitly in
terms of camera calibration, rotation, and translation matrices.

Without any additional constraints, it is well known that the
solution is ambiguous up to some arbitrary homography. This
may be easily recognized by observing that, from any recon-
struction {P j,Xi|∀i, j}, an alternative reconstruction with the
same likelihood is given by choosing any invertible H in

x j
i ∝ P jXi ∝ (P jH)(H−1Xi) ∝ P j′X′i , ∀i, j. (9)

A reconstruction that suffers from this ambiguity is known
as a projective reconstruction. Autocalibration is an attempt
to resolve this ambiguity by finding a rectifying homography
that removes the projective distortion by bringing a projective
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reconstruction to within a similarity transformation of the true
configuration.

As will be discussed in Section 2.1, there are additional (par-
tially problem-dependent) constraints on the calibration matri-
ces of real cameras. Previous autocalibration algorithms have
attempted to resolve the ambiguity by minimizing some heuris-
tic objective based on these calibration constraints, or more for-
mally by assuming a prior distribution for calibration parame-
ters and then maximizing prior probability. However, this max-
imum a priori approach relies on several flawed assumptions
that makes it highly sensitive to noise, which we discuss in de-
tail in Appendix A.

It is normally thought that likelihood cannot be used as an
objective for autocalibration, because from (9), it is clear that
multiplication by a homography does not change likelihood.
However, the calibration constraints actually reduce the degrees
of freedom (DOF) of camera views: whereas a general projec-
tion matrix has 11 DOF, after taking into account calibration
constraints, this is typically reduced to just 7 DOF for pose and
focal length.

This fact has several consequences. First, there is the pedan-
tic recognition that any general reconstruction parameterized
in terms of projection matrices (or equivalently, parameterized
by fully general calibration matrices) will violate the calibra-
tion constraints, and hence does not represent a plausible re-
construction. Thus, minimizing reprojection error under such
a parameterization does not yield a true maximum likelihood
estimate.

A second, more practical consequence, is that if one uses a
parameterization that admits only plausible solutions (i.e., en-
forces calibration constraints), then the maximum likelihood
solution does not suffer from the projective ambiguity (i.e., it
is a metric reconstruction).

Because a projective reconstruction has too many DOF, there
will not generally exist any homography that will rectify a pro-
jective reconstruction and cause all calibration constraints to be
exactly satisfied. Thus, in order to obtain a plausible metric re-
construction from a projective reconstruction, it will always be
necessary to ‘project’ the solution from the implausible space
to the lower dimensional plausible space after multiplying by
the rectifying homography.

This projection step increases reprojection error and is af-
fected by the choice of rectifying homography. Therefore, we
propose to seek the homography that leads to a reconstruction
with maximal likelihood. Specifically, the maximum likelihood
rectifying homography is given by

ĤML = argmin
H

∑
i, j

d(x̃ j
i ,P

j
CH
−1Xi)2, (10)

where {P j
C|∀ j} are the ‘closest’ projection matrices to {P jH|∀ j}

that are plausible (i.e., exactly satisfy the problem-dependent
metric constraints). There are multiple ways for accomplishing
this projection into plausible space which we will discuss in
Section 2.2.

Considering that previous methods have attempted to maxi-
mize prior probability, and we have shown that it is also possi-

ble to maximize likelihood, it is natural to wonder if it would
not be better to devise a maximum a posteriori (MAP) objec-
tive that takes into account both prior probability and likeli-
hood. However, as discussed in Appendix A, the prior distri-
bution model that was assumed by previous approaches is not
actually an accurate representation of the available prior knowl-
edge, which for the most part takes the form of hard constraints
that are already exactly satisfied by the projection step in our
ML approach.

With that said, one could still form meaningful prior distri-
butions for focal length and/or principal point, but our analysis
of variance has shown that the variance in these parameters of
a projective reconstruction is dominated more by propagated
measurement noise than actual uncertainty in the true configu-
ration. This propagated variance depends on the unknown cam-
era configuration in metric space, and hence there is no way to
accurately predict the scale in the prior model. Even if the scale
were known, there would be little benefit because of the large
degree of uncertainty in these parameters.

We conclude this section by reminding the reader that: (a) a
projective reconstruction that maximizes likelihood (i.e., mini-
mizes reprojection errors) is not a true ML reconstruction, al-
though we refer to it as a ‘ML projective reconstruction’ in
keeping with existing literature, and for lack of a better term;
(b) the ML rectifying homography for any arbitrary projective
reconstruction takes that reconstruction as close as possible to
the ML reconstruction, although there are not enough DOF to
actually obtain a ML reconstruction by multiplication with any
homography; (c) the only practical method for obtaining a ML
reconstruction is by using metric bundle adjustment with a pa-
rameterization that takes into account all problem-dependent
calibration constraints, although this is a nonlinear method that
requires a good initialization to avoid local minima (hence, the
need for projective reconstruction and autocalibration).

2.1. Metric Constraints
Theoretically, any constraints or prior assumptions about the

true configuration could be exploited by an autocalibration al-
gorithm in order to assist in resolving the projective ambigu-
ity and obtaining a metric reconstruction. For example, the
fact that real cameras can only image what is in front of them
results in an inequality constraint for each measured image
point. These inequality constraints, known as chirality con-
straints [29], can be used to restrict the location of the plane
at infinity (which partially defines the rectifying homography)
to a convex polytope [28].

Not much more can be said about the point cloud or camera
poses without some loss of generality, although assumptions
of this sort are sometimes used. For example, if the images are
known to come from a high frame-rate video source, the change
in camera position and rotation between successive frames may
be assumed small, and this assumption was found useful in Al-
cantarilla et al. [39]. Additionally, one might assume that the
reconstructed point cloud should have some significant volume
(i.e., it should not be embedded in a line or plane), and should
occupy some relatively compact volume of space. These as-
sumptions were implicitly used in the stratified method of Hart-

4



ley et al. [28] by normalizing the principal components to make
the reconstructed point cloud roughly spherical.

In contrast, much more definitive assumptions can be made
about the calibration matrices, because these represent intrinsic
parameters of the cameras independent of pose. The geomet-
ric meaning of each calibration parameter is made clear by the
parameterization of Faugeras [40],

K =

 αu −αu cot θ u
αv/ sin θ v

1

 , (11)

where θ ∈ (0, π) is the image skew angle, αu and αv are the
image scaling factors in the skewed basis, and (u, v) are the co-
ordinates of the principal point. This can be reduced to the
simpler parameterization used by Hartley and Zisserman [1],

K =

 αx s u
αy v

1

 , (12)

where s ∈ (−∞,∞) is the skew parameter and αx and αy are the
horizontal and vertical image scaling factors. Additionally, one
may write αx = f and αy = f r, where f is focal length and r is
pixel aspect ratio.

Because the images taken by any real camera will be
unskewed and have a known (usually 1:1) pixel aspect ratio
(i.e., the images are generally not stretched or squished either
horizontally or vertically), this means that in the true configu-
ration, s = 0 and αx = αy. When it is known that the principal
point is in the center of the image, the image coordinate sys-
tem can be chosen so that u = v = 0. For any two projection
matrices that are known to correspond to the same camera, the
calibration parameters will be equal (except perhaps for focal
length, which might be assumed to be variable).

We propose an additional inequality constraint based on the
fact that a camera field of view must be in the range (0, π), and
in practice a much less conservative range can usually be as-
sumed, which we denote (θmin, θmax). Thus, focal length must
be in the range

f ∈
 S w

2 tan( θmax
2 )

,
S w

2 tan( θmin
2 )

 , (13)

where S w is the width of the image in pixels. For a standard
35mm camera using an 18-55mm lens, this means that focal
length is approximately in the range of 1-3 image widths.

Several other constraints can be found in the literature on
autocalibration, but it is important to understand that any addi-
tional constraints can all be derived from the above-mentioned
calibration constraints (see Appendix B). This includes
the rank (i.e., common plane at infinity π∞) and positive-
semidefinite constraints of the absolute dual quadric Q∗∞ [22],
the linear and nonlinear constraints on Q∗∞ [23], the infinite ho-
mography constraint on the absolute dual conic Ω∗∞ [1], the
Kruppa equations [8], the essential matrix and rigidity con-
straints [12], and the modulus constraint [41]. Thus, although

(10) is not specifically formulated in terms of these previously
used constraints, it does not neglect any of them.

2.2. Projection into Plausible Space

Given a rectifying homography H, we have identified two
reasonable ways to accomplish the ‘projection’ of an implau-
sible projective reconstruction into the space of plausible met-
ric reconstructions. The simplest and most direct method is to
factor the projection matrices [37, p.230] to extract calibration
matrices,

P jH→ K j[R j|t j] ∀ j, (14)

then minimally augment the calibration matrices to fit into the
parameterization defined by the constraints of the plausible
metric space (e.g., if skew is zero and pixel aspect ratio is unity,
set s⇐ 0 and αy ⇐ αx),

{K j|∀ j} → {K′ j|∀ j}, (15)

and then reform the projection matrices using the augmented
calibration matrices,

P j
C ← K′ j[R j|t j] ∀ j. (16)

Although this direct projection is simple and efficient, it does
not necessarily yield the projection matrices that minimize re-
projection error. Thus, it may sometimes be preferable to re-
section the set of cameras from the rectified structure point
cloud using a parameterization that implicitly enforces calibra-
tion constraints. That is,

{P j
C|∀ j} = argmin

{K j[R j |t j]|∀ j}

∑
i, j

d(x̃ j
i ,K

j[R j|t j]H−1Xi)2, (17)

where the K j are parameterized to enforce calibration con-
straints. If the calibration matrices are independent (that is, if
they do not correspond to the same physical camera), then the
cameras can be resectioned independently and (17) becomes
equivalent to

P j
C = argmin

K j[R j |t j]

∑
i

d(x̃ j
i ,K

j[R j|t j]H−1Xi)2 ∀ j. (18)

The minimization of (17) or (18) can be carried out us-
ing Levenberg-Marquardt [42]. If one assumes that images are
taken by different cameras, and that the center of projection is in
the center of the images, then each camera can be parameterized
by 1 parameter for focal length, 4 parameters for quaternion ro-
tation, and 3 parameters for position.
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3. Implementation

As discussed in Section 2.1, the constraints that can be incor-
porated into (10) depend upon the type of problem and ones
knowledge of the cameras that were used (if it is a photo col-
lection, video, etc). However, the most generally available con-
straints, which apply to all cameras that take unskewed and un-
stretched images, are that skew is zero and pixel aspect ratio is
unity. Therefore, we parameterize calibration matrices in the
plausible metric space by

K j =

 f j 0 u
f j v

1

 . (19)

When projecting into this parameterization we prefer to use
the direct method from Section 2.2 for reasons of efficiency.
We further incorporate chirality constraints by modifying the
objective function of (10) to minimize

γ
∑
i, j

δ
j
i +

∑
i, j

d(x̃ j
i ,P

j
CH
−1Xi)2, (20)

where γ is a penalty cost and δ j
i is an indicator function that is

1 when the ith point is behind the jth camera, and zero other-
wise. Using γ = ∞ would cause strict enforcement of the chi-
rality constraints, but this could introduce problems because, as
pointed out by Nister [30], a single outlier can cause the chiral-
ity constraints to have no solution, or for the solution polytope
to not contain the true plane at infinity. Therefore, in order to
remain robust to these potential outliers, we prefer to use a finite
penalty of γ = 100.

In order to minimize (20) we have designed the Dual Strat-
ified Monte Carlo Maximum Likelihood (DS-MC-ML) auto-
calibration algorithm (Algorithm 1). We obtain a first guess
estimate of H by linearly estimating Q∗∞ using the method of
Pollefeys et al. [23] (line 1). This initial linear estimate is ef-
ficient and provides an exact solution in the absence of noise,
although we do not expect the estimate to be accurate under
realistic levels of noise.

Therefore, our primary method of initialization is to use a
random sampling approach that takes advantage of the well-
understood prior distribution for calibration matrices. This is
done by randomly selecting two projection matrices P1 and P2
(line 4) and then randomly sampling a hypothesis for K from
the prior distribution (line 5). For the prior distribution, we as-
sume focal length is uniformly distributed in the plausible range
(13) and that principal point is in the center of the image. If
one has greater uncertainty in principal point, it can simply be
sampled from a normal distribution centered around the image
center.

We then use the closed form dual stratified (DS) autocalibra-
tion method of Gherardi and Fusiello [36] to calculate an exact
solution for H from the view pair using K (line 6). If the sam-
pled K was correct, then H will also be correct. We evaluate the
likelihood of each candidate homography (line 7) according to

(20), and continue the random sampling process, keeping track
of the solution with maximal likelihood.

Algorithm 1 DS-MC-ML Autocalibration

Require: A projective reconstruction from ≥ 2 views, and a
prior model for the distribution of Ki, i = 1 . . .m.

Ensure: Ĥ is the rectifying homography that takes the input
reconstruction as close as possible to the ML metric recon-
struction.

1: Ĥ← LinearAutocalibrate(reconstruction)
2: εmin ← MeanReprojectionError(Ĥ, reconstruction)
3: repeat
4: {P1,P2} ← select two projection matrices at random.
5: K← sample from prior distribution.
6: H← AutocalibratePair(P1,K,P2,K)
7: ε ← MeanReprojectionError(H, reconstruction)
8: if ε < εmin then
9: Ĥ← H

10: if ε < εthresh then
11: break
12: end if
13: εmin ← ε
14: count ← 0
15: else
16: count ← count + 1
17: end if
18: until count ≥ stopCount
19: Ĥ← NonlinearImprove(Ĥ, reconstruction)

The beauty of sampling from the prior distribution is that the
search space is inherently restricted to solutions that are, by def-
inition, within the high density region of the assumed probabil-
ity distribution. Also, as this is essentially only a 1-dimensional
search for focal length within a restricted range, we do not ex-
pect a large number of random trials to be necessary before find-
ing a very good solution.

However, the number of trials that are needed in order to find
a solution that is in the basin of attraction of the global min-
imum is dependent on the relative pose of camera views, the
number of views, and the assumed prior distribution. If the
epipolar geometry is near a Critical Motion Sequence (CMS)
[27], or if there is a large number of views, or if one uses a
prior distribution with unusually large uncertainty, then more
samples will be needed. Therefore, rather than choosing a fixed
number of iterations up front, we prefer to use an adaptive strat-
egy that terminates the sampling process after stopCount = 300
iterations have elapsed without further improvement (line 18).
This allows the algorithm to remain efficient for simple prob-
lems, while naturally scaling up to use more iterations on more
difficult problems.

In addition, we incorporate a threshold for early termination
based on the mean reprojection error value (line 10). For exam-
ple, if the mean reprojection error is less than εthresh = 1 pixel,
then the solution is already quite accurate and the search can
be terminated. The ability to do early termination has not been
possible using previous autocalibration algorithms because the
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previously used heuristics have no geometric meaning like re-
projection error.

Once the random sampling process has completed, we will
have obtained a robust and fairly accurate estimate of the recti-
fying homography. From this estimate of H we further min-
imize (20) using Levenberg-Marquardt [42] with numerical
differentiation. Although a reduced parameterization for H is
possible (B.12), we prefer to use a free parameterization, ex-
cept we fix the fourth column to (0, 0, 0, 1)T because it has no
bearing on the result.

The final output of Algorithm 1 is a robust and precise esti-
mate of the rectifying homography, but obtaining a metric es-
timate requires one final projection into plausible metric space.
This final projection can be accomplished by again using the
direct projection method, or by using the more computationally
expensive resectioning method (Section 2.2), which results in
lower reprojection error.

4. Experimental Methods

We compare the proposed maximum likelihood method
against several other representive autocalibration algorithms by
generating synthetic configurations and then projecting struc-
ture points to obtain image points (a.k.a., image correspon-
dences). The correspondences are corrupted by adding nor-
mally distributed noise, and then projective bundle adjustment
is used to find the maximum likelihood projective reconstruc-
tion. Finally, we use each autocalibration algorithm to rectify
the projective reconstruction and make an objective comparison
to the true configuration.

4.1. Algorithms Compared
Fundamentally, the rectifying homography H is encoded by

the absolute dual quadric Q∗∞, which is defined by the plane
at infinity π∞ and absolute dual conic Ω∗∞. These relationships
(explained in detail in Appendix B) define a natural categoriza-
tion of autocalibration algorithms.

In linear methods, Q∗∞ is estimated directly. In nonlinear
methods H is improved nonlinearly. In stratified methods a
brute force search is first used to identify π∞ (after comput-
ing a finite bounding volume via chirality constraints) and then
Ω∗∞ is estimated in a second phase. Finally, in the dual strati-
fied method K (which is directly related to Ω∗∞) is first guessed
based on prior knowledge and then π∞ is estimated in a second
phase.

Therefore, we compare against representative algorithms
from each category. The specific algorithms we compare
against are:

Linear Method (L). We use the linear method of Hartley and
Zisserman [1], Pollefeys et al. [23] to estimate Q∗∞ using
the symmetric parameterization of Q∗∞. We have found
that this is much more reliable than using the reduced pa-
rameterization. The constraints we use are based on the
assumptions of zero skew, unit aspect ratio, and zero prin-
cipal point, with experimentally determined weighting co-
efficients of ws = 1, wr = 1, wu = wv = 0.2.

Linear with Nonlinear Method (L+NL). A nonlinear im-
provement is also given in Hartley and Zisserman [1],
Pollefeys et al. [23] which can be parameterized by the
rectifying homography to implicitly enforce the rank and
positive-semidefinite constraints. It is also necessary to
parameterize ω∗ j∀ j using some problem-dependent con-
straints. We found that this method has a tendency to be-
come extremely unstable if the parameterization of ω∗ j al-
lows for nonzero principal point or varying focal length, so
we use only a single parameter for constant focal length.

Stratified Method (S). We used Hartley’s stratified approach
[28] with a brute force search for π∞ using the recom-
mended discretization of 100×100×100. Additionally, we
augment the search space with one additional point rep-
resenting the location of π∞ that would be found by the
linear algorithm. When solving for the absolute conic, we
include constraints for zero skew, constant focal length,
unit aspect ratio and constant principal point.

Stratified with Nonlinear Method (S+NL). Hartley [28]
calls for a nonlinear improvement after the initial stratified
search so we follow by using the method of Pollefeys
et al. [23].

Dual Stratified Method (DS). We have used the method of
Gherardi and Fusiello [36], with the recommended pa-
rameters of 50 samples for focal length, wsk = 1/0.01,
war = 1/0.2, wu0 = 1/0.1, wv0 = 1/0.1.

Dual Stratified with Nonlinear Method (DS+NL). It is rec-
ommended in Gherardi and Fusiello [36] to follow up with
a nonlinear improvement so we use the method of Polle-
feys et al. [23].

(NEW) Maximum Likelihood Method (ML). We estimate
the rectifying homography using DS-MC-ML (Algorithm
1).

(NEW) ML with Resection Method (ML+R). We estimate
the rectifying homography using DS-MC-ML (Algorithm
1), and finally project the reconstruction into the plausible
metric space by using the resectioning method (18).

4.2. Objective Evaluation

A reconstruction includes structure points, camera poses, and
intrinsic camera parameters. Due to the large number of differ-
ent types of parameters, identifying a good objective evaluation
can be challenging.

It is common to see autocalibration algorithms compared
purely on the basis of how accurately specific intrinsic cam-
era parameters have been reconstructed. However, each camera
has 5 intrinsic parameters, and the relative importance of each
parameter is unclear, so there is no objective way to combine
the various intrinsic parameters into a single measure of recon-
struction quality. One could report the error for each parameter
independently, but usually a reduction of the error in any one
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parameter forces an increase in the error of some other param-
eter. Thus, there would still be no clear objective way for the
reader to assess which method was better.

A much more objective evaluation is to look at the structure
of the reconstruction, because all of the structure points and
camera centers in a perfect reconstruction should be within a
similarity transformation of the true configuration. Therefore,
when the true configuration is known one can simply factor
out this similarity transformation to align the two point clouds
and then measure the sum of squared distances between them.
A linear solution for finding the similarity transformation that
minimizes sum of squared distance is given in Umeyama [43].

We have observed that all autocalibration algorithms tend to
have much higher error in the reconstructed camera centers than
in the reconstructed structure point cloud. Therefore, we use
only the structure point cloud to compute the alignment, and
then use the mean squared error of reconstructed camera centers
as the objective error. Any error in the intrinsic camera parame-
ters necessitates shifting the camera center to compensate (e.g.,
a reduction in focal length moves the cameras closer), and thus
by measuring error in camera center we obtain a truly objective
measure of reconstructed camera accuracy that is independent
of the specific objectives being optimized by the autocalibration
algorithm.

4.3. Experiments

We generate random configurations with 2000 structure
points distributed uniformly on the surface of a cube of width
100 centered at the origin. There are 10 cameras arranged on a
circle of radius 1500 at 10◦ increments, with a positional jitter
of ±10, looking at a random point in a cube of width 40 cen-
tered at the origin. All cameras have a constant focal length in
the range of 600-800 (relative to an image size of 640 × 480),
zero skew, unit aspect ratio and zero principal point.

For each level of noise, we generate a set of 100 random con-
figurations, project the image points and perturb with additive
gaussian noise using σ = 0, σ = 1, or σ = 3 pixels. Then we
run projective bundle adjustment to obtain the maximum likeli-
hood projective reconstruction and attempt autocalibration.

The case of zero noise is not realistic, but validates that the
algorithms have been implemented correctly. The case of σ = 1
represents a realistic level of noise for a typical subpixel match-
ing algorithm after outliers have been removed using MLESAC
[44] or some other variation of RANSAC [45]. The case of
σ = 3 represents a larger level of noise that might be obtained
by using less accurate multi-scale features, such as SIFT [46]
features.

For each algorithm and for each noise level, we computed
the Empirical Cumulative Distribution Function (ECDF) of the
objective error measure after autocalibrating all 100 configura-
tions.

5. Results

For the unrealistic case of σ = 0 (i.e., the when there exists
a homography that exactly rectifies the projective solution with

no noise), we found that all methods performed extremely well,
with the bulk of objective error (as described in Section 4.2)
being approximately in the range of 10−27 to 10−15 for all algo-
rithms. Because the stratified and dual stratified algorithms use
discretized searches, their precision was worse before nonlinear
improvement.

The ECDFs at a more realistic noise level of σ = 1 pixel are
shown in Fig. 1. Here we see that many of the previous algo-
rithms have difficulty achieving robust and accurate results. It
is clear that our ML+R and ML algorithms have superior pre-
cision and robustness to all of the other algorithms compared.
The DS algorithm is a close runner up about 85% of the time,
but gives unstable results the remaining 15% of the time. Sur-
prisingly, the nonlinear improvement actually tends to worsen
the DS algorithm at this level of noise, which we speculate is
due to inherent ability of the DS algorithm to guarantee that at
least two cameras have calibration matrices that meet our ex-
pectations, whereas the nonlinear method has the potential to
diverge.

Performance at Realistic Noise Level 
(100 trials, σ = 1.0 pixels)
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Figure 1. Empirical cumulative distribution of camera errors from 100 ran-
dom configurations using each method of autocalibration. The initial projective
reconstruction is obtained by projective bundle adjustment from image point
measurements with normally distributed noise having σ = 1.0 pixels. The x-
axis uses a log-scale for x > 50.

We show the ECDFs at a larger noise level of σ = 3 pixels in
Fig. 2. At this high level of noise, the DS algorithm becomes
very unreliable. Only our ML and ML+R algorithms continue
to provide robust results, and the benefit of the final resectioning
stage is more pronounced.

In Fig. 3, we evaluate autocalibration performance of the ML
method at σ = 1 using 2,3,4,5,6 and 10 views. We have plot-
ted the median error with interquartile range (IQR), and both
asymptotically approach zero as the number of views increases,
demonstrating stability for larger problems.

Although the ML+R method performs slightly better it is
omitted from Fig. 3 for clarity because the median performance
is almost the same. It should also be noted that lower error
could be achieved with the same number of views by using a
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wider baseline, moving the points closer to the cameras, or re-
ducing the added noise.

Performance at Exaggerated Noise Level 
(100 trials, σ = 3.0 pixels)
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Figure 2. Empirical cumulative distribution of camera errors from 100 ran-
dom configurations using each method of autocalibration. The initial projective
reconstruction is obtained by projective bundle adjustment from image point
measurements with normally distributed noise having σ = 3.0 pixels. The x-
axis uses a log-scale for x > 50.

We demonstrate the runtime performance of our ML and
ML+R autocalibration algorithms in Fig. 4, using constraints
on aspect ratio, skew and principal point during the resection-
ing step. The timings are shown with 95% confidence intervals
from 25 repetitions, and indicate that performance scales lin-
early with the number of views. Runtime is about 1.2 seconds
for 1000 points in 64 views using the ML method, or 6 seconds
when using the ML+R method, on a Core i7 920 processor.
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Figure 3. Objective autocalibration performance using 2,3,4,5,6 and 10 views
at σ = 1. The median of 10 trials with interquartile range is plotted.
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Figure 4. Runtime performance of ML and ML+R autocalibration routines,
shown with 95% confidence intervals from 25 repetitions. Performance scales
linearly with the number of views.

5.1. Examples on Real Data

In order to demonstrate our method on real data we obtained
some reconstructions that were created using existing structure
from motion systems. We will show that the method is general
enough to be applied on any type of problem, such as a photo
collection from different cameras, a photo collection from the
same camera, and a video reconstruction. Our general approach
is to take an existing metric reconstruction and then apply pro-
jective bundle adjustment to corrupt it, giving us a ML projec-
tive reconstruction from which we attempt autocalibration. We
have not used any metric bundle adjustment to improve the re-
sults.

It should be noted that this is a much more realistic test of
autocalibration than simply multiplying an existing metric re-
construction by an arbitrary homography and then trying to re-
cover this homography; as we have shown in the results section,
all of the tested algorithms are capable of solving that problem
extremely well. The difficulty in autocalibration is entirely due
to the violation of metric constraints during projective bundle
adjustment.

The success of an autocalibration algorithm can be assessed
visually by looking at the reconstructed point cloud (Fig. 5).
The point cloud of an arbitrary projective reconstruction (e.g.,
as obtained after projective bundle adjustment) is unbounded
(Fig. 5b), and it is impossible to discern any meaningful struc-
ture. If π∞ has been identified approximately correctly but Ω∗∞
has not, then the convex hull will be bounded but the recon-
struction will appear with a roughly affine skew as in Fig. 5c,
and this is called a quasi-affine reconstruction. On the other
hand, if Ω∗∞ is identified correctly but π∞ is not as in Fig. 5e,
then the reconstruction will be unbounded and typically have
a ‘bow-tie’ shape that spans from −∞ to ∞, with some dis-
cernible structure near the origin. Only in a metric reconstruc-
tion are straight lines and angles preserved, and thus it is easy to
identify a correct autocalibration of a cube, as computed by our
ML algorithm in Fig. 5d, by observing 90◦ angles between ad-
jacent faces. It is important to note that beyond correcting for
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an overall warping factor, autocalibration cannot be expected
to remove noise from the individual structure points or camera
positions.

(a) (b) (c) (d)

(e)

Figure 5. Example point clouds viewed from the top. (a) Points on the surface
of a cube in the true configuration without noise. (b) A subset of the (un-
bounded) ML projective reconstruction after bundle adjustment. (c) A partially
successful autocalibration has obtained a quasi-affine reconstruction where at
least π∞ does not intersect the convex hull. (d) A successful autocalibration
is visually identified by preserving right-angles. (e) A failed autocalibration
attempt where π∞ intersects the convex hull, sending reconstructed points to
infinity and producing a characteristic ‘bow-tie’ shape.

In our first example, we used a reconstruction of Branden-
burg Gate in Berlin, Germany that has been reconstructed by
Frahm et al. [47] from a collection of 5,514 photos gathered
from the internet. The reconstruction consists of 19,963 struc-
ture points and has a total of 1,006,741 observations. From
the existing image correspondences we ran projective bundle
adjustment to obtain a ML projective reconstruction, and then
autocalibrated using our ML+R method assuming zero skew
and aspect ratio, obtaining a mean squared reprojection error
of 0.79 pixels relative to image dimensions of 1000 × 1000. A
view of the reconstruction after our autocalibration is shown in
Fig. 6, and does not appear to suffer from any overall distortion,
indicating that autocalibration was successful.

The next example is a reconstruction of the Piazza dei Sig-
nore in Verona, Italy that was reconstructed by the SAMAN-
THA [48] pipeline from a collection of 1144 × 856 photos
taken by the same physical camera. The reconstruction con-
sists of 2971 structure points, 39 views, and had an initial mean
squared reprojection error of 0.330401 pixels which was re-
duced to 0.253106 after our projective bundle adjustment. We
autocalibrated using our ML method, assuming a search range
for focal length in the range of 1-3 screen widths, and initially
assumed a principal point at (572, 428) (the center of the image)
for the dual-stratified search. After the nonlinear improvement,
the principal point was corrected to (554.836, 452.762). After
factoring out the similarity transformation, the mean squared
difference between the structure points in our metric rectified
reconstruction and the original was just 2.734 26 × 10−5, which
agrees quite closely with the original. An orthographic view of
the reconstructed point cloud after our autocalibration is shown
from a top down perspective in Fig. 7, where it can be verified
from the density of points on the vertical walls that they are
parallel.

Finally, we demonstrate autocalibration of a video recon-

struction that was made by [49] using a parallel real-time vi-
sual SLAM method. This reconstruction consists of a total of
23 keyframes that were selected out of a 300 frame video with
a resolution of 1224× 1024. There are a total of 1,473 structure
points and 17,077 observations. The mean squared reprojection
error of the reconstruction was 4.78 pixels, which we reduced to
0.529021 pixels using our projective bundle adjustment. Then
we autocalibrated using our ML+R method assuming constant
focal length, constant principal point, zero skew, and zero as-
pect ratio, which raised the mean square reprojection error only
slightly to 0.530253 pixels. A view of the reconstruction after
our autocalibration is shown in Fig. 8.

6. Conclusions

It has been thought that likelihood cannot be exploited dur-
ing autocalibration because multiplication by any homography
does not change reprojection error, and all previous autocalibra-
tion algorithms have instead opted to minimize various heuris-
tics based on manipulating the algebraic constraints that arise
based on the assumption of zero skew, unit aspect ratio, or con-
stant principal point/focal length. However, these heuristic cost
functions are unstable because even the ideal ML projective re-
construction is not exactly within a homography from a true
metric reconstruction.

We have shown that by taking into account metric con-
straints, a likelihood can be associated with any homography,
thereby allowing one to seek the maximum likelihood rectify-
ing homography. The ML homography can be found reliably
by using a dual-stratified initialization followed by nonlinear
improvement, and this method is more robust and accurate than
any of the other algorithms we have tested for both small and
large problems.

The advantages of maximizing likelihood as opposed to min-
imizing some arbitrary heuristic are many. First, the solution is
invariant to the initial projective ambiguity; unlike all previous
approaches, the projective reconstruction can be multiplied by
any homography without changing the ML rectified result. Sec-
ond, it is very robust to noise because it minimizes reprojection
errors, which are geometrically meaningful. Third, because the
error is geometrically meaningful, it is simple to incorporate
early termination for improved performance whenever a rea-
sonable error tolerance has been met. Fourth, likelihood can
be used as an objective way to compare the performance of
various autocalibration algorithms when a ground truth recon-
struction is not available. And finally, it does not require any
configuration-dependent weighting coefficients.

Appendix A. Limitations of Maximum a Priori Autocali-
bration

We denote the meaningful elements of a calibration matrix
K j by a calibration vector, k j = (α j

x − α j
y, s j, u j, v j)T. Note that

the first element of the calibration vector is the difference be-
tween horizontal and vertical image scaling factors, because we
generally expect these to have some unknown but equal value.
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Figure 6. Autocalibrated reconstruction from a collection of 5,514 web photos (taken by different cameras) of Brandenburg Gate in Berlin, Germany. The
reconstruction consists of 19,963 structure points (black dots), and cameras are shown as red pyramids. Some representative images used in the reconstruction are
shown along the bottom.

Figure 7. Autocalibrated reconstruction from a collection of photos (taken by the same camera) of the Piazza dei Signore in Verona, Italy. The reconstruction is
shown from a top down orthographic perspective. The reconstruction consists of 39 views and a total of 2971 structure points. Some images from representative
views are shown along the bottom (the aerial view was not used in the reconstruction and is presented only for reference).
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Figure 8. A view of the point cloud of the autocalibrated reconstruction from a video reconstruction with 23 views, 1,473 structure points and 17,077 observations.
Some representative views are shown along the bottom. The approximate location of the scene elements was determined based on point elevations and is pictured
here using opacity mapped squares for reference.

If one assumes that these calibration vectors are each dis-
tributed according to independent multivariate normal distribu-
tions, then maximizing prior probability leads to the maximum
a priori rectifying homography, which is found by by minimiz-
ing the sum of squared Mahalanobis distances,

ĤMAP = argmax
H

m∏
j=1

1√
(2π)N |Σk|

exp
(
−1

2
(k j − µk)TΣ−1

k (k j − µk)
)

(A.1)

= argmin
H

m∑
j=1

(k j − µk)TΣ−1
k (k j − µk), (A.2)

where N = 4 is the length of k j, and µk = (0, 0, 0, 0)T and Σk
define the mean and covariance of the assumed prior distribu-
tion for k j, the calibration vectors [30]. If one further assumes
that all parameters are independent, then (A.2) reduces to a
weighted sum of squared errors,

ĤMAP = argmin
H

∑
j

wu(u j)2 + wv(v j)2 + wα(α j
x − α j

y)2 + ws(s j)2.

(A.3)

Most autocalibration algorithms strive to optimize an ob-
jective of this form (or some close approximation), where
the weighting coefficients wu,wv,wα,ws are determined using
various guesses [26, 27, 36] or more commonly just omitted
[1, 23, 27, 28], which is equivalent to assuming they are all
equal. It has been thought that the ideal way to choose these
weighting coefficients is by looking at the distribution of intrin-
sic parameters in real cameras [26, 30].

However, with the exception of focal length and possibly
principal point, the uncertainty of these parameters in real cam-
eras is negligible because modern cameras are manufactured to
not produce skewed or stretched images. In other words, the
prior model for these parameters should essentially be a delta
function, and the parameters of any rectified result will never
fall within the high density region of such a distribution.

In practice, one observes significant variance in these param-
eters, but the dominant source of this uncertainty is not due to
uncertainty in the prior model, but rather is propagated from un-
certainty in the measured image correspondences. Because pro-
jection matrices are over-parameterized (a homogeneous pro-
jection matrix has 11 DOF whereas a metric camera has only
7 DOF for pose and focal length), metric constraints will be
happily violated by projective bundle adjustment in order to
achieve a solution with lower reprojection error. The rectifying
homography does not have enough DOF to restore these metric
constraints, and hence the error is propagated into the intrinsic
parameters of the metric rectified result.

Thus, the distribution of calibration parameters is configura-
tion dependent, and the assumptions of (A.3) that parameters
are normally distributed and independent are not valid. Fur-
thermore, the propagated variance causes the expected value of
a calibration vector to be shifted from zero. If one were to use
this objective anyway, the optimal choice of weighting coeffi-
cients wu,wv,wα,ws would ideally be determined as the inverse
of propagated variance, rather than being hard-coded based on
some prior model of real cameras.

Because variance must be propagated through projective re-
construction, then though autocalibration, and finally through
the RQ factorization to get calibration parameters, we have not
had much success using analytical approximations. However,
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we have managed to obtain accurate estimations of the propa-
gated variance by using Monte Carlo methods. Each trial con-
sists of perturbing the original image point measurements with
Gaussian noise and then repeating the entire process of projec-
tive reconstruction and autocalibration. An example of the sam-
ple covariance matrix containing all intrinsic parameters for a
system of 6 views is shown in Fig. A.9, calculated from 1000
random trials.

The most distinct observation from Fig. A.9 is that the matrix
is not even remotely close to being diagonal, as was assumed by
the independence assumptions in (A.3). Furthermore, we ob-
serve that the greatest amount of uncertainty is propagated into
focal length, and secondly into principal point. This confirms
the already known facts that neither the estimation of principle
nor focal length are well-conditioned problems [14]. The large
covariance between horizontal and vertical focal lengths shows
that the aspect ratio constraint is relatively good. In some views,
there is a noticeable positive or negative correlation between fo-
cal length and principal point. Additionally, we see that there
is very strong dependence between the focal lengths of differ-
ent views. In other words, the assumption of independence in
(A.3) is incorrect.

In order to get a more qualitative idea about how to best
choose weighting coefficients, we calculated the constraint
power (inverse variance) from 100 random configurations and
show the results relative to skew, with 95% confidence inter-
vals, in Table A.1. These results indicate that, for the range
of random configurations tested, the optimal overall choice for
weighting coefficients in (A.3) is ws = 1, wα = 1.01577,
wu = 0.0217334, and wv = 0.0219337. In other words, skew
and aspect ratio constraints should be weighted approximately
equally, whereas principal point should have a very negligible
weight. In practice, we find that using any non-zero weight on
principal point or focal length tends to magnify the effects of
noise and provide a worse result.
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Figure A.9. Covariance matrix of intrinsic parameters for a set of six views.
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Table A.1. Power of calibration constraints relative to a constraint on skew,
calculated as the inverse variance of each parameter in the calibration vector
from 100 random configurations, and shown with 95% confidence intervals.

Constraint Relative Power

s 1
αx − αy 1.01577 ± 0.0170464
αx 0.0169471 ± 0.00156958
αy 0.0169465 ± 0.00157017
u 0.0217334 ± 0.00202811
v 0.0219337 ± 0.00200886

However, we stress that the optimal choice of weighting co-
efficients in (A.3) is still highly configuration dependent. In
order to demonstrate this we have generated several random
configurations and then autocalibrated using all possible rela-
tive weightings between skew and aspect ratio. The objective
measure of autocalibration accuracy is shown as a 2D surface
for each configuration in Fig. A.10. One sees that the location
of the minima is different for each problem, which is a clear
indication that the optimal choice of weights is configuration
dependent.

Appendix B. Relationship to Previous Autocalibration
Constraints

Any 3 × 4 projection matrix P can be uniquely factored [37,
p.230] into a rotation matrix R, translation t, and calibration
matrix K as

P ∝ K[R|t]. (B.1)

Define Ĩ = diag(1, 1, 1, 0). Then, observe that the rotation
and translation components can be canceled out by

PĨPT ∝ K[R|t]Ĩ[R|t]TKT

∝ K[R|0]
[

RT

0

]
KT

∝ KKT.

(B.2)

Any projective camera P j in the reconstruction is related to
a metric camera (denoted by subscript M) via the rectifying ho-
mography HM,

P j
M ∝ P jHM ∀ j. (B.3)

Substituting (B.3) into (B.2), we obtain

P jHMĨHT
MP

jT ∝ K jK jT ∀ j. (B.4)

Using (B.4), prior constraints on the calibration matrices can
be translated into nonlinear constraints on HM. This makes it the
most fundamental equation of autocalibration, from which all
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(a) (b) (c) (d) (e)

Figure A.10. Example cost surfaces demonstrating that the optimal choice of weights is configuration dependent. Each surface corresponds to a different configu-
ration, and the intensity at each point on the surface indicates the objective reconstruction quality as a function of the relative weighting between skew (x-axis) and
aspect ratio (y-axis) constraints. The weights corresponding to the most accurate reconstruction is marked, and changes significantly with each configuration.

other constraints that are based on calibration matrices can be
derived. Making the substitutions of Q∗∞ = HMĨHT

M and ω∗ j =

K jK jT, equation (B.4) is usually written as a constraint on Q∗∞
and ω∗ j,

P jQ∗∞P jT ∝ ω∗ j ∀ j. (B.5)

In the literature Q∗∞ is known as the absolute dual quadric
(ADQ), and ω∗ j is a dual image of the absolute conic (DIAC).
The relationship between these entities is depicted graphically
in Fig. B.11.
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Figure B.11. The absolute dual quadric Q∗∞ encodes for the absolute dual conic
Ω∗∞, as well as the plane at infinity π∞ that Ω∗∞ is embedded in. A dual image
of the absolute conic ω∗ j is the image of Ω∗∞ as seen by camera P j having focal
point at C j, and can be obtained either by projection of Q∗∞, or by using the
infinite homography H j

∞ to map Ω∗∞ from π∞ to the image plane of P j.

The advantage of using Q∗∞ is that some constraints can be
translated into linear constraints on Q∗∞, allowing linear least
squares method to be used as an initialization. However, there
are additional internal constraints on Q∗∞ that cannot be en-
forced by a linear solution. By construction, Q∗∞ must be sym-
metric, rank 3 and positive-semidefinite (Theorem 1) and all
ω∗ j must be symmetric and positive-semidefinite (Theorem 2).

Because Q∗∞ is singular, it is a degenerate (dual) quadric,
meaning that it actually represents a dual conic embedded in
some plane. This dual conic, called the absolute dual conic
(ADC) and denoted by Ω∗∞, is encoded in the upper 3 × 3 por-
tion of Q∗∞. The plane it lives in is called the plane at infinity,
denoted by π∞ and encoded by the null space of Q∗∞. Geomet-
rically, (B.5) shows us that ω∗ j is the projection of Q∗∞ onto the

image plane of P j. Therefore, Ω∗∞ is also the projection of Q∗∞
by the canonical projection matrix, P = [I|0].

In a metric reconstruction HM = I, in which case one ob-
serves that Q∗∞M = Ĩ, Ω∗∞M = I, and π∞M = (0, 0, 0, 1)T, which
does not correspond to any real plane equation. By definition,
a point X lies on a plane π iff πTX = 0, and therefore the
only points lying on π∞M are homogeneous points of the form
(a, b, c, 0)T. These are all points at infinity, hence why we call
π∞ the plane at infinity. Under the action of a homography H
a plane π transforms to π′ = H−Tπ, and hence π∞ could be any
real plane in the projective reconstruction.

Appendix B.1. The Infinite Homography

As a consequence of the fact that Q∗∞ is degenerate, its pro-
jection ω∗ j can alternatively be computed via a planar homog-
raphy transfer of Ω∗∞. The homography that transfers from
π∞ = (pT, 1)T to the image plane of view P j = [A j|a j] is called
the infinite homography, denoted by H j

∞, and given by

H j
∞ ∝ A j − a jpT ∀ j. (B.6)

Under the action of a homography H, a dual conic ω∗ trans-
forms to ω∗′ = Hω∗HT. Thus, we obtain the infinite homogra-
phy constraint on Ω∗∞,

H j
∞Ω∗∞H j

∞
T ∝ ω∗ j ∀ j. (B.7)

The infinite homography constraint is a pairwise constraint
between image planes (see Fig. B.11), a special case of (B.4)
that does not enforce the common support plane for π∞.

Appendix B.2. The Kruppa Equations

Let ei j denote the image of the ith camera center in view j
(an epipole). There is a corresponding skew-symmetric matrix
[ei j]× [1, p. 581], and multiplying both sides of (B.7) by [ei j]×
leads to

[ei j]×ω∗ j[ei j]× ∝
(
[ei j]×H j

∞
)
Ω∗∞

(
H j
∞

T
[ei j]×

)
(B.8)

∝ Fi jΩ
∗
∞FT

i j ∀i j, (B.9)
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where Fi j is the fundamental matrix between views i and j. The
set of equations in (B.9) are equivalent to the original Kruppa
equations [8], expressing constraints on Ω∗∞ in the form of cor-
responding epipolar lines tangent to ω∗ j. Thus, the Kruppa
equations are just a special case of the infinite homography con-
straint.

Appendix B.3. The Rigidity Constraint
It has been shown [12] that the Kruppa equations are also

equivalent to a constraint that the essential matrix has two iden-
tical singular values and one zero singular value. The essential
matrix is related to the fundamental matrix by

Ei j = [t]×R = K jTFi jKi, (B.10)

where t and R represent the translation and rotation between
the camera pair. This constraint may also be stated as

det(Ei j) = 0 ∧ 2 tr((Ei jET
i j)

2) − (tr(Ei jET
i j))

2 = 0, (B.11)

and is called the rigidity constraint on Ei j because it is a result
of the rigid motion between cameras.

Appendix B.4. The Modulus Constraint
Without loss of generality, we can align the projective recon-

struction such that Pi = [I|0], and choose our metric recon-
struction such that Pi

M = Ki[I|0]. Then, because Pi
M = PiHM, it

can be verified that HM is of the form

HM =

[
Ki 0
vT 1

]
. (B.12)

In this case, Ω∗∞ = KiKiT, and v = −KiTp. Substituting
(B.12) into (B.3), we see that

K j[R j|t j] ∝ [(A j − a jpT)Ki|a j] (B.13)

K jR j ∝ (A j − a jpT)Ki (B.14)

K jR jKi−1 ∝ A j − a jpT. (B.15)

Thus, if K j = Ki then H j
∞ = A j − a jpT is similar (a.k.a.

conjugate) to a rotation, and has eigenvalues proportional to
{eiθ, e−iθ, 1}. In other words, the modulus of the first two eigen-
values are equal. This is known as the modulus constraint on
p. Note that the modulus constraint is usually enforced as a
constraint on the coefficients of the characteristic polynomial
of H j

∞, as in Chandraker et al. [34], Pollefeys and Van Gool
[41].

Assuming all calibration matrices are equal, enforcing the
modulus constraint between all pairs of views would ensure a
common support plane for π∞, and is therefore also a special
case of (B.5).

Theorem 1. Let H be any real matrix. Then HHT is positive-
semidefinite.

Proof. A square matrix M is positive-semidefinite if and only
if zTMz ≥ 0, for any non-zero z. It holds that zTHHTz =

||HTz||2 ≥ 0.

Theorem 2. Let Q be an n×n positive-semidefinite matrix, and
P be any m×n matrix. Then PQPT is also positive-semidefinite.

Proof. The factorization Q = LLT must exist because Q is
positive-semidefinite. Let H = PL. Then HHT = PLLTPT =

PQPT is positive-semidefinite by Theorem 1.
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