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1. Introduction

Bundle adjustment [1–3] is the maximum likelihood nonlin-
ear improvement of a structure from motion (SfM) reconstruc-
tion, but being a nonlinear algorithm it requires a very good ini-
tialization. When dealing with uncalibrated monocular video
or snap-shots, there are still no practical algorithms for direct
metric reconstruction, and hence initialization is usually per-
formed in projective space because the projective geometry of
two or three views (as represented by the fundamental matrix
and trifocal tensor, respectively) can be estimated minimally or
linearly.

A reconstruction spanning an arbitrarily large number of
views can be obtained by merging smaller projective recon-
structions together. Although these partial reconstructions
could be computed using either the fundamental matrix or tri-
focal tensor, there are many theoretical advantages to using the
trifocal tensor:

1. Estimation of the fundamental matrix from the images of
coplanar scene points is ill-conditioned, whereas the trifo-
cal tensor is still uniquely determined [4].

2. There are additional types of constraints available for three
views, so correspondence measurements provide stronger
constraints on an estimate of the tensor than they do on an
estimate of the fundamental matrix [5].

3. In order to merge two fundamental matrices using cor-
responding structure points, correspondences must be
tracked through at least three frames already; thus, one
might as well use the correspondences to their full poten-
tial by estimating the trifocal tensor.

It is well known that the trifocal tensor can be estimated ei-
ther minimally from 6 points [6–9] or linearly from 7 or more
points [10–12]. The linear method is over-determined, which
provides robustness to noise, but does not enforce internal con-
straints so the result is not geometrically consistent. In con-
trast, the minimal algorithm implicitly enforces all internal con-
straints and requires fewer points, which theoretically means
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fewer iterations will be required when used within a RANSAC
framework for robust estimation.

The importance of using minimal methods within RANSAC
has been stressed [13], and in particular it has been concluded
that the 6 point method should be used when estimating the
trifocal tensor [2, 14], with empirical results showing that the 6
point method produces substantially lower error [14]. However,
more recently developed quasi-linear methods improve the per-
formance of the linear method and were not considered in that
study. The purpose of this research was to determine whether
or not the minimal or linear algorithm is better to use within
RANSAC when state of the art techniques are employed; and,
if the linear method is superior, then we also wanted to know
which variation was most effective, and how many points to use
for optimal performance.

We begin by introducing some basic mathematical back-
ground by showing how the tensor can be derived from corre-
sponding line constraints in three images ( Section 2) and how it
relates to projection matrices (Section 2.1). We then discuss tri-
focal tensor estimation algorithms (Section 3), beginning with
the minimal 6 point solution (Section 3.1), in which we intro-
duce some minor tricks for improving robustness and disambi-
guiting between the multiple solutions. Next we introduce the
basic linear method (Section 3.2), and discuss three alternative
ways for enforcing the trilinear constraints (Section 3.2.1), as
well as four methods for quasi-linear reestimation to enforce
internal consistency constraints (Section 3.2.2). We also pro-
vide a discussion of additional estimation algorithms and ex-
plain why they were not included in our comparison (Section
3.3).

Out experiments (Section 5) begin with several tests designed
to first find the best linear variation (Section 5.1) which we then
compare to the minimal algorithm to see which has better per-
formance (Section 5.2). Finally we investigate performance in
RANSAC as a function of the number of points used, on both
synthetic and real data (Section 5.3).

Our experimental results indicate several things: (a) we show
that an older, lesser used, method of quasi-linear enforcement
of the internal constraints actually performs best; (b) we could
find no difference in performance between the various methods
of trilinear constraint representation, which leads us to believe
that it is best to stick with the simplest and fastest method; (c)
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we show that the best linear variation provides a substantially
more accurate estimate than the minimal method, and is nearly
a maximum likelihood estimate when estimated from more than
10 points; (d) contrary to popular belief, we show that using
larger subset size in RANSAC is actually better because it al-
lows a larger final consensus size to be reached, and in a shorter
overall runtime, despite the fact that runtime for the minimal
method by itself is substantially faster.

2. The Trifocal Tensor

The constraints on corresponding lines in three views were
first derived for calibrated cameras in [15, 16]. These con-
straints were generalized to the uncalibrated case in [17], and
formulated in terms of a trifocal tensor in [5, 10, 11]. It was
shown in [18] that point constraints could also be represented
using the tensor. In this section we summarize the derivation of
the tensor from line constraints as described in [2].

Without loss of generality, the first projection matrix can be
assumed canonical, so that the set of projection matrices for
three views can be written as

P = [I|0] (1)
P′ = [a1 . . . a4] = [A|a4] (2)
P′′ = [b1 . . . b4] = [B|b4]. (3)

The tensor will be derived based on a correspondence be-
tween images of a line in 3D space. Let the three corresponding
lines in the image plane be denoted as l ↔ l′ ↔ l′′. The back
projection of each line yields a plane,

π = PTl = (lT, 0)T (4)

π′ = P′Tl′ =

[
ATl′
aT

4 l′

]
(5)

π′′ = P′′Tl′′ =

[
BTl′′
bT

4 l′′

]
. (6)

Because the lines were all images of a single 3D line, these
back-projected planes must all intersect in a single 3D line that
we write parametrically as a linear combination of two points
X1 and X2,

X(t) = tX1 + (1 − t)X2. (7)

Figure 1. Diagram of trifocal line constraints. The first camera center is denoted
by C. A parametric 3D line in space is given by X(t). This line projects onto
the first image plane as l. The line l back-projects to the plane π. Notation is
similar with respect to the other two views.

This incidence relation is diagrammed in Fig. 1. Clearly,
X(t) must be a point on each back-projected plane equation, so

πTX(t) = π′TX(t) = π′′TX(t) = 0. (8)

If we concatenate these planes into a 4 × 3 matrix M =

[π|π′|π′′], then MTX(t) = 0. Substituting (4-6) into M, we ob-
tain

M =

[
l ATl′ BTl′′
0 aT

4 l′ bT
4 l′′

]
. (9)

Because MTX1 = 0 and MTX2 = 0, M must have a 2-
dimensional null space and is therefore rank 2 by the rank-
nullity theorem. Thus, it follows that the first column can be
written as a linear combination of the second two columns, so
π = απ′ + βπ′′. From the bottom row we obtain

0 = αaT
4 l′ + βbT

4 l′′, (10)

which implies that α = kbT
4 l′′ and β = −kaT

4 l′ for some scalar k.
Making these substitutions back into the top half of M provides
a homogeneous equivalence constraint between the lines,

l = bT
4 l′′ATl′ − aT

4 l′BTl′′ (11)

= l′′Tb4ATl′ − l′Ta4BTl′′. (12)

Introducing the notation l = (l1, l2, l3)T and

Ti = aibT
4 − a4bT

i , (13)

it can be verified that (12) is equivalent to

li = l′Til′′ ∀i. (14)

Thus, the relationship between cameras has been completely
described by {T1, T2, T3}. These three matrices, known as the
correlation slices, can be represented by a single 3×3×3 tensor
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T , allowing the above relations to be written equivalently in
tensor notation as

T
jk

i = a j
i b

k
4 − a j

4bk
i (15)

li = l′jl
′′
k T

jk
j . (16)

It should be noted that, similar to the fundamental matrix, the
views are treated asymmetrically by the trifocal tensor. In other
words, there are three different trifocal tensors for any trio of
views depending on the order in which the views are consid-
ered. In the remainder of this work, we assume an implicit
ordering of these views.

2.1. Relationship to Projection Matrices
Because the trifocal tensor provides a complete description

of the epipolar geometry for three views, it must be possible to
extract a suitable set of projection matrices. However, it is not
immediately obvious how one could factor a given tensor into
the form of (13) to get back the original camera matrices. An
algorithm is given in [2, Alg. 15.1] and is summarized here.

One begins by calculating the epipoles e′ and e′′, which are
the images of the focal point of the first camera in the other two
views. This is achieved in two steps. First, denote the left and
right null spaces of each Ti as vi and ui in

Tivi = 0, i = 1 . . . 3 (17)

TT
i ui = 0, i = 1 . . . 3. (18)

Next, denote U = [u1|u2|u3]T and V = [v1|v2|v3]T. Then the
epipoles are given by the null spaces of U and V,

Ue′ = 0 (19)
Ve′′ = 0. (20)

Once the epipoles have been determined, one can recover the
fundamental matrix between the first two views. Recall that the
tensor was defined based on a correspondence between lines
l ↔ l′ ↔ l′′ in each image. If the third line l′′ back projects
into a plane π′′, then this plane induces a planar-homography
mapping the first line l to the second line l′.

A homography that transfers points according to x′ = Hx
transfers lines according to l′ = H−Tl. According to this defini-
tion, (14) implies that the homography transferring a line from
the first to the second image induced by a line in the third image
is given by

H12 = [T1, T2, T3]l′′, (21)

where the notational convention of writing A[B,C,D]E is used
as a shorthand for [ABE|ACE|ADE].

Given a point x in the first view, it is therefore transferred to
x′ = H12x in the second view. The line between two points is
given by the cross product, so the epipolar line l′e corresponding
to x is given by

l′e = e′ × [T1, T2, T3]l′′x. (22)

Thus, the fundamental matrix F12 from the first to the second
view is given by

F12 = [e′]×[T1, T2, T3]l′′. (23)

This formula holds for any l′′ as long as l′′ is not in the null
space of any Ti. One choice that avoids this degeneracy is e′′.
Thus, one obtains

F12 = [e′]×[T1, T2, T3]e′′. (24)

It is known that the fundamental matrix corresponding to a
pair of cameras given by P = [I|0] and P′ = [M|m] is equal
to [m]×M. Therefore, a suitable choice for the first two camera
matrices consistent with the tensor is given by

P = [I|0] (25)
P′ = [[T1, T2, T3]e′′|e′]. (26)

The third camera matrix can now be determined from (13).
Using the notation of (3),

ai = Tie′′, i = 1 . . . 3 (27)
a4 = e′ (28)
b4 = e′′ (29)

and substituting into (13) we obtain

Ti = Tie′′e′′T − e′bT
i (30)

e′bT
i = Ti(e′′e′′T − I). (31)

If we choose the scale of e′ such that e′Te′ = ||e′′|| = 1, then
we can left multiply by e′T to get

bT
i = e′TTi(e′′e′′T − I) (32)

bi = (e′′e′′T − I)TT
i e′. (33)

Thus, a consistent choice for the third camera matrix is given
by

P′′ = [(e′′e′′T − I)[TT
1 , T

T
2 , T

T
3 ]e′|e′′]. (34)

3. Initial Tensor Estimation Algorithms

In this section we will review some of the known methods for
estimating the trifocal tensor directly (i.e., without using non-
linear methods). In section Section 3.1 we describe the minimal
algorithm for estimating a tensor from 6 points, in section Sec-
tion 3.2 we describe the basic linear approach to estimating a
tensor from 7 or more points (with several variations), and in
Section 3.3 we mention some other algorithms for estimating
the trifocal tensor and explain why we did not consider them in
our evaluation.

3



3.1. Minimal Solution
It has been shown that any projective reconstruction algo-

rithm that works on n views of m + 4 points can be transformed
into a dual algorithm for doing a projective reconstruction from
m views and n + 4 points [7]. This observation is known as the
Carlsson-Weinshall duality.

Thus, the relatively straightforward minimal reconstruction
algorithm for 7 points in 2 views [2, sec. 11.1.2] may be used
to compute the dual problem of a minimal reconstruction from
6 points in 3 views [6–9]. This is the basic idea behind the
minimal approach, although some further tweaking is possible.
The specific algorithm we use is given in [2, alg 20.1], which
we summarize below (with two minor improvements).

We denote the 3 unknown camera matrices as P j, j = 1 . . . 3,
the 6 unknown structure points as Xi, i = 1 . . . 6, and the image
of the ith point in the jth view as x j

i . Therefore, the projection
constraints are written as

x j
i ∝ P jXi ∀i, j. (35)

In the dual algorithm, it will be necessary to use the image
measurements as basis vectors, but the method only works if
one chooses a set of 4 points, no 3 of which are collinear in any
of the views.

Rather than simply verifying that the selection is not collinear
(within a threshold), we take this a step beyond [2, alg 20.1]
by enumerating all 15 possible ways to pick the 4 points. For
each way, we consider the 4 ways to pick a triangle out of the
4 points in each of the 3 views, and pick the set of 4 points so
as to maximize the area of the triangle with minimal area in
any view (our first improvement). Choosing the points in this
way increases the stability of the remainder of the algorithm by
ensuring that the points are as far from collinear as possible.

Using the fact that the area of a triangle is given by the deter-
minant of the matrix constructed of homogeneous corner points
as rows or columns, this maximization can be written as

max
∀a,b,c,d

min
∀ j


∣∣∣∣[x j

a|x
j
b|x

j
c]
∣∣∣∣ , ∣∣∣∣[x j

a|x
j
b|x

j
d]
∣∣∣∣ ,∣∣∣∣[x j

a|x
j
d |x

j
c]
∣∣∣∣ , ∣∣∣∣[x j

d |x
j
b|x

j
c]
∣∣∣∣


 , (36)

where {a, b, c, d} is some combination of indices selected from
{1, . . . , 6}. Alternatively, one could maximize the residual error
to the least squares line (the result would be much the same). In
the remaining steps, for notational convenience we assume that
the points are ordered such that the selected 4 come first.

The second step is to find projective transforms T j for each
view j = 1 . . . 3 that transform the first 4 points in that view to
a canonical basis for the projective space P2. In other words,

T jx j
i = ei, i = 1 . . . 4, (37)

where ei for i = 1 . . . 3 are the standard basis vectors of R3 and
e4 = (1, 1, 1)T. These T j matrices can be calculated in closed
form, as shown in [6]. Then, by the Carlsson-Weinshall duality
[7], correspondences in the dual problem are given by

x̂ j ↔ x̂′j, j = 1 . . . 3, (38)

where

x̂ j = T jx j
5 (39)

x̂′j = T jx j
6. (40)

In the dual problem, there are 4 implicit correspondences
given by ei ↔ ei for i = 1 . . . 4. The constraints eT

i F̂ei = 0
for i = 1 . . . 3 imply that the diagonal elements of F̂ are zero,
and the constraint eT

4 F̂e4 = 0 means that the sum of the ele-
ments of F̂ is zero. Thus, the dual fundamental matrix can be
parameterized as

F̂ =

 0 p q
r 0 s
t −(p + q + r + s + t) 0

 . (41)

From the additional dual correspondences in (38), 3 linear
constraints are imposed on the entries p, q, r, s, t using x̂T

j F̂x̂′j =

0. This leaves a 2-dimensional basis for the null space, but due
to the overall scale ambiguity, there is just 1 degree of freedom
remaining. Thus, we can write

F̂ = λF̂1 + F̂2, (42)

where F̂1 and F̂2 are solutions corresponding to the null space
basis vectors. The free parameter λ is then determined using the
the internal constraint that det F̂ = 0, a cubic equation for which
there are 1 or 3 real solutions (complex/imaginary solutions can
be ignored).

The next step is to retrieve a pair of reduced camera matrices
compatible with the dual fundamental matrix. It is not known
how these cameras might be formed directly from (41), but
there is an alternative parameterization for the reduced funda-
mental matrix for which the answer is known. Specifically, if
the reduced fundamental matrix is given by

F̂ =

 0 b(d − c) −c(d − b)
−a(d − c) 0 c(d − a)
a(d − b) −b(d − a) 0

 , (43)

then a corresponding pair of reduced camera matrices is given
by

P =

 1 0 0 1
0 1 0 1
0 0 1 1

 , P′ =

 a 0 0 d
0 b 0 d
0 0 c d

 . (44)

The question is then how to determine a, b, c, d in (43) from
p, q, r, s, t in (41). It turns out that this can be solved linearly.
Three linearly independent constraints are provided by
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 p r 0
q 0 t
0 s l


 a

b
c

 = 0, (45)

and 3 more constraints (2 of which are linearly independent)
are provided by

(d − a, d − b, d − c)

 0 p q
r 0 s
t −(p + q + r + s + t) 0

 = 0. (46)

These 6 constraints admit a least squares solution for a, b, c, d
to be computed from p, q, r, s, t. Finally, back in the origi-
nal measurement domain, the structure of the reconstruction is
given by the dual of the dual reconstruction,

Xi = Ei, i = 1 . . . 4 (47)

X5 = (1, 1, 1, 1)T (48)

X6 = (a, b, c, d)T, (49)

where Ei are the standard basis vectors of R4. The camera ma-
trices P j can be computed in the original measurement domain
by resectioning [2, sec. 7.1], using the original measurements
x j

i and the reconstructed structure Xi.
Because there may be up to 3 real solutions to (42) (only

one of which is correct), it is recommended in [2, alg 16.4] to
make the function for computing the tensor output 3 possible
results, all of which must then be tested within the RANSAC
framework. We find this solution undesirable because it not
only results in three times as much wasted computation, but
also makes the output of the function ’messy.’

We have noticed that the initial search for triplet correspon-
dences typically involves computing the fundamental matrix
between the first two views, F21, to rule out bad matches that
do not need to be searched for in the 3rd view. Therefore, we
pass F21 into the minimal triplet routine and use it to select the
correct solution which has the same fundamental matrix when
there are 3 unique solutions (our second improvement).

3.2. Linear Algorithm

The following algorithm is from Hartley [10], using the prin-
ciples first developed in Shashua and Werman [11]. A corre-
spondence of three points x ↔ x′ ↔ x′′ that are the images
of one structure point X in each of the respective views gives
rise to 9 linear constraints on T . These constraints are not eas-
ily written in matrix notation, but can be expressed in tensor
notation as

xi(x′ jε jpr)(x′′kεkqs)T
pq

i = 0rs, (50)

where ε is the Levi-Civita symbol, xi are the elements of x, and
a similar notation is used to denote the elements of x′ and x′′.

Only 4 of the 9 equations represented by (50) are linearly inde-
pendent, so it is not necessary to use all of them. One choice of
4 linearly independent equations is given, after simplification,
by

xk(x′ix′′lT 33
k − x′′lT i3

k − x′iT 3l
k + T il

k ) = 0, ∀i, l ∈ {1, 2}.
(51)

These equations can be arranged into a homogeneous linear
system,

At = 0, (52)

where t is a vector containing the elements of T , and A is a
constraint matrix containing 27 or more linearly independent
rows. A least squares solution is obtained by minimizing ||At||
subject to ||t|| = 1, which can be accomplished using SVD [2,
alg A5.4].

There are primarily two limitations of this direct solution.
First, none of the 8 internal constraints are enforced, so the ten-
sor is not a consistent representation of any geometrical config-
uration. Second, the algebraic error that is minimized by SVD
has no particular geometric meaning.

Because the error minimized by the linear solution has no
particular geometric meaning, it is not surprising that the so-
lution is not invariant to a scaling or translation of the image
points. It has been noticed that normalizing the correspondence
data generally leads to improved estimation accuracy [9, 12].

That is, instead of estimating Pi directly in x = PiX, it is
recommended to replace x by x̃ = Hix, where Hi is a 3 × 3
translation-scaling matrix constructed such that the distribution
of points x̃ in the ith image is centered around (0, 0) and has
a standard deviation of

√
2. Thus, one actually estimates P̃i =

HiPi, and then maps the result back to Pi = H−1
i P̃i.

3.2.1. Choosing Equations
In constructing the constraint matrix A, there are a few differ-

ent approaches that could be used. One option is to select only
4 of the 9 equations which are linearly independent, as in (51),
for improved performance. However, it has been suggested that
using all 9 constraints in (50) might give better results [10]. A
theoretical argument for using all 9 constraints was given in [2,
sec 17.7], where it was noted that the condition of the full set of
equations is better, and therefore using all equations might help
to avoid difficulties in near singular situations.

A third option is to translate the point-point-point corre-
spondences into point-line-line correspondences [2, sec. 17.7].
Given a correspondence between a point x in the first view,
which is known to lie on a line l′ = (l′1, l

′
2, l
′
3)T in the second

view and l′′ = (l′′1 , l
′′
2 , l
′′
3 )T in the third view, then there is one

constraint on the tensor given by

xil′ql′′r T
qr
i = 0. (53)

For each point-point-point correspondence, it is easy to gen-
erate 4 linearly independent point-line-line correspondences
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in the following manner: let l′1 and l′2 be two lines passing
through x′, and l′′1 and l′′2 be two lines passing through x′′.
Then, the 4 constraints are given by

xil′ jq l′′kr T
qr
i = 0, ∀ j, k ∈ {1, 2}. (54)

If l′1 and l′2 are orthonormal, and l′′1 and l′′2 are orthonormal,
then the resulting constraint matrix will have the same SVD as
if all 9 point-point-point constraints had been used, and there-
fore give the same solution for lower computational cost.

It was suggested to find these orthonormal lines using House-
holder matrices, but we note that it is simpler to just use the
horizontal and vertical lines passing through the point. Given a
point (x, y, 1)T in the image, the vectors representing these lines
are given by

lh =
(1, 0,−x)T

√
1 + x2

lv =
(0, 1,−y)T√

1 + y2
. (55)

3.2.2. Enforcing Internal Constraints
A reconstruction from projection constraints alone is, at best,

ambiguous up to an arbitrary projective transform having 15 de-
grees of freedom (dof) in homogeneous space. Each projection
matrix has 11 dof, so there are 11m−15 dof to the projective ge-
ometry representing any configuration of m views [2, sec. 17.5].
Thus, the projective geometry of 3 views has 18 dof.

The tensor is a homogeneous entity with 27 elements, so it
has 26 dof, and this means that a geometrically consistent trifo-
cal tensor must satisfy 26 − 18 = 8 independent algebraic con-
straints. These constraints are implicitly enforced by the min-
imal estimation algorithm (Section 3.1), but cannot be directly
enforced in the linear method (52). However, when mapping
the tensor into projection matrices for general use with the al-
gorithm of Section 2.1, one naturally obtains a geometrically
consistent representation because projection matrices have no
internal constraints. The problem with this passive approach
to constraint enforcement is that the estimation is adjusted to
satisfy internal consistency without regard to the image corre-
spondence constraints, and this could potentially result in a very
large increase in reprojection error.

A better solution is to reestimate a consistent tensor in a
second linear step by holding some aspects from the original
estimation fixed. We refer to these as quasi-linear methods.
The first such method was given in Hartley [10], where it was
pointed out that if a4 and b4 from (13) are known, then the
tensor may be expressed linearly in terms of the remaining ele-
ments of the projection matrices. Specifically, one can write

t = Ea, (56)

where a contains all the elements of ai,bi ∀i ∈ {1, 2, 3}, and
E is a constraint matrix based on the known a4 and b4. From
(26-34) it can be seen that, without loss of generality, one can
choose a4 = e′ and b4 = e′′, which can be extracted from the

initial linear estimate using (19-20). Plugging (56) into (52),
one obtains

AEa = 0. (57)

Thus, the initial problem (52) of minimizing ||At|| subject to
||t|| = 1 is analogous to minimizing ||AEa|| subject to ||Ea|| = 1,
but the latter guarantees a geometrically consistent result.

Because this is not in the traditional form that can be eas-
ily solved by taking the right singular vector of AE, and the
||Ea|| = 1 constraint has no geometrical significance beyond
preventing the trivial solution of a = 0, one might instead min-
imize ||AEa|| subject to ||a|| = 1. However, because E is not full
rank, the solution vector would not be uniquely determined. In
order to ensure a unique solution, it was suggested to use addi-
tional constraints of

ai · a4 = 0 i ∈ {1, 2, 3}, (58)

which it was shown can be imposed without loss of generality.
These additional constraints can be written as a system of linear
equations by constructing an appropriate matrix C in

Ca = 0, (59)

and the minimization of ||AEa|| subject to ||a|| = 1 and Ca = 0
can be performed linearly using [2, alg A5.5].

It is not obvious if the addition of these latter constraints
would actually be beneficial because the non-unique solutions
would still be equivalent under the projective ambiguity, and the
potential downside is that the degree to which the real trilinear
constraints are violated must be increased in order to reduce the
error on these artificial constraints.

Shortly thereafter in Hartley [12], it was shown that the prob-
lem of minimizing ||AEa|| subject to ||Ea|| = 1 could be solved
directly ([2, alg A5.6]), and this has become Hartley’s recom-
mended method in Hartley and Zisserman [2, alg 16.2].

To summarize, there are three interesting quasi-linear meth-
ods that may have similar performance, and we put all three
variations to the test in our empirical comparison:

min ||AEa|| subject to ||a|| = 1 (60)
min ||AEa|| subject to ||a|| = 1 and Ca = 0 (61)
min ||AEa|| subject to ||Ea|| = 1. (62)

3.3. Algorithms not Considered
There exist a number of iterative algorithms for estimating

the trifocal tensor, such as using the Sampson approximation
[2, sec 16.4.3] (first used for conic fitting by Sampson in [19]),
iterative adjustment of the epipoles [2, sec 16.3], iterative ad-
justment of the image points [14], the nonlinear algorithm from
[20], or nonlinear enforcement of internal constraints [12]. We
do not consider these nonlinear algorithms because they all re-
quire an initial estimate (e.g., found by the linear method), and
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once an initial geometrically valid tensor has been found, it can
be converted into camera matrices without loss of information
and then bundle adjustment is the maximum likelihood nonlin-
ear improvement. Therefore, we concentrate our search only on
finding the best geometrically consistent initialization.

We do not consider parameterizations of the linear algorithm
using reduced affine coordinates such as [21] because none of
the error is distributed onto the estimation in the first view, and
this will necessarily yield inferior results in comparison to a
solution that evenly distributes the error across all views.

We do not consider the linear Factorization method [22]
(or its variations), because it assumes orthographic projection
which is a crude approximation to perspective projection. Al-
though there exist nonlinear methods to correct for perspective
effects, such as in [23], the initial orthographic solution might
not be in the basin of attraction of the perspective correct solu-
tion. Therefore, it is an inferior approach to the linear algorithm
which properly accounts for perspective in the initial solution.

Finally, we do not consider globally optimal approaches to
estimate the trifocal tensor using branch and bound [24] be-
cause the exponential time complexity of this approach admit-
tedly makes it impractical for general use, much less integration
into a framework requiring many repeated evaluations such as
RANSAC.

4. Robust Estimation with RANSAC

In practice, a correspondence set will usually contain some
mismatches (outliers) that would be inconsistent with the true
reconstruction. A robust procedure for dealing with outliers
in any model fitting problem is RANSAC [13], and is often ap-
plied to computation of the trifocal tensor, as in Torr and Zisser-
man [14]. There have been many improvements to the original
RANSAC algorithm (see Raguram et al. [25] for a survey) but
we mention only the basic algorithm here for simplicity.

The objective of RANSAC is to find the largest sample con-
sensus; i.e., to find the model that is consistent with the largest
subset of the data. This is achieved by picking many ran-
dom subsets, creating an initial reconstruction from each sub-
set, classifying inliers according to a threshold, and storing the
model with the largest set of inliers that was found.

The usual way to choose the number of trials needed is by a
probabilistic argument [13]: if the size of each random subset is
s and the percent of inliers is p, then the probability of picking
a subset of all inliers is ps. If, after n trials, no trial subset has
contained all inliers, then the overall result is failure. Thus, the
probability of failure f is given by

f = (1 − ps)n. (63)

Rearranging, one can solve for the minimum number of trials
needed to meet any given probability of failure,

f = (1 − ps)n (64)

n = log(1−ps) f =
log f

log(1 − ps)
. (65)

Although p is not usually known in advance, it can be in-
creased adaptively whenever a new larger sample consensus is
found until the termination condition is exceeded.

It is clear that the number of iterations required grows ex-
ponentially with the size of the initial pick set, s. Thus, it is
usually recommended to choose the smallest possible s. In the
case of the trifocal tensor the minimal size is s = 6, using the
minimal algorithm (Section 3.1).

5. Experimental Results

We start by trying to find the best variation of the linear al-
gorithm by comparing the different ways to enforce internal
constraints and represent the trilinear constraints (Section 5.1).
Once we have identified the best linear variation, we compare
the minimal 6 point algorithm to the best linear variation with 7
points in terms of accuracy and runtime performance (Section
5.2). Lastly, we investigate the effect of the number of points
used (either 6 for the minimal algorithm ,or 7+ with the linear
method) on the overall performance on RANSAC (Section 5.3).

In most of our tests we have used synthetic data where the
levels of noise can be precisely controlled to more accurately
investigate the dependence on noise. We generate synthetic cor-
respondences from uniformly distributed 3D structure points in
a [−50, 50]3 volume imaged by camera views on a circle having
random radius uniformly distributed in the range (200, 1000).
Each camera has a 45◦ field of view with principal point in the
center of the image, and the separation between each camera on
the circle is uniformly distributed in the range of (0.01, 5) de-
grees. Correspondences are generated by projecting the struc-
ture points into each image plane and adding uniformly dis-
tributed random noise in the range (−ε, ε) pixels, for a noise
level of ε.

5.1. Best Linear Variation
We start by comparing the three methods of quasi-linear rees-

timation to enforce internal constraints. We first plotted the me-
dian of the mean reprojection error from 1000 repetitions as a
function of noise (Fig. 2a). Note that we have only consid-
ered ε < 1, because generally the precision of a correspondence
finder is limited by the image discretization. However, we also
note that effective noise is relative to object distance.

Our results indicate that (60) actually increased the error in
comparison to the passive method (Section 2.1), whereas min-
imizing either (61) or (62) reduced the error by roughly 50%,
with no noticeable difference between the two. However, we
observed some sensitivities when minimizing (62), and a plot
of reconstruction error as a function of the SVD precision toler-
ance (Fig. 2b), with the noise level fixed at ε = 0.5, shows that
in fact (62) is a much less stable algorithm. Specifically, (62)
demands a precision of at least 1 × 10−15 to give good results,
whereas (61) was insensitive to the SVD precision, requiring
fewer iterations for the same accuracy. We therefore conclude
that (61) is the superior way to enforce internal constraints,
despite it being an older and lesser known method.

Next, we considered the various methods for representing tri-
linear constraints described in Section 3.2.1. These methods
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Figure 2. Comparison of methods for enforcing internal constraints in the linear algorithm by quasi-linear reestimation. The minimization of ||At|| s.t. ||t|| = 1 is
the basic linear algorithm, and constraint enforcement is done passively when mapping back to projection matrices (Section 2.1); the minimization of ||AEa|| s.t.
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This plot is also the median over 1000 trials.

were tested on configurations of 100 structure points using the
7 point linear method. We measured the reprojection error for
the 7 fitted points (Fig. 3, left), as well as the remaining 93
points (Fig. 3, middle) by looking at the residual errors from
maximum likelihood triangulation. As before, we plotted the
median results over 1000 trials for each level of noise.

From previous theoretical arguments (Section 3.2.1), one
would expect to see equivalent results using either all 9 point-
point-point constraints (9ppp) or the 4 point-line-line con-
straints (4pll), and slightly worse results using just the 4 lin-
early independent point-point-point constraints (4ppp). How-
ever, our results showed no significant difference in median per-
formance. In order to see if there was a difference in worst-case
performance, we also analyzed the histogram of performance
from 100,000 random configurations (Fig. 3, right). Surpris-
ingly, the distribution of performance appears exactly identical.
Therefore, we conclude that there is no justification for using
the more computationally expensive 9ppp method, and there
is also no need to complexify the implementation by translat-
ing the point-point-point constraints into point-line-line con-
straints; in other words, we conclude that it is best to simply
use the four linearly independent point-point-point constraints
(4ppp).

5.2. Minimal vs. Linear
Having identified the best linear variation, we are now pre-

pared to compare the performance of the linear method to the
minimal 6 point method. This was done by generating config-
urations of 100 points and then reconstructing from a subset of

6 points using the minimal method or 7 points using the linear
method.

We first plot the median of the mean reprojection error on the
fitted data (Fig. 4, left) as an indicator of precision. Because the
minimal 6 point method is an exact solution it is expected to
have zero error, and this is confirmed in the plot. We measured
actual error on the order of 1×10−12 which is due only to limited
numerical precision. The linear algorithm has non-zero error
that increases with noise because it is over-determined, and the
fact that the reconstruction error remains proportional to and
slightly less than the noise indicates that it is capable of fitting
the data well.

A second graph showing the median of the mean reprojec-
tion error for additional testing correspondences after maxi-
mum likelihood triangulation (Fig. 4, middle) shows how accu-
rate the reconstruction actually was; here we see that the mini-
mal 6 point algorithm, while precise, is much less accurate be-
cause it does not fit the testing points nearly as well as the linear
algorithm for any non-zero level of noise.

A third graph shows the median of the mean error on all
available data after bundle adjustment, which shows that even
though the minimal initialization was worse, both methods are
usually in the basin of attraction of the global minimum.

Runtime performance between the minimal 6 point method
and the linear with 7 or more points was compared with a plot
of the mean reconstruction runtime for 1000 random configu-
rations (Fig. 5). We observed that the linear method exhibits
O(n) performance, at least when n (the number of points) was
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less than 80, despite the fact that the computational cost of SVD
is O(n3). A linear regression gives shows that the performance
of our implementation of the n-point linear method is about
0.096125n+0.503315 microseconds on the testing machine (In-
tel Core i7 920), compared to 0.124317 microseconds for the 6
point minimal method. In other words, the minimal algorithm
is significantly faster, but the linear algorithm is still quite fast
for practical purposes.
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Figure 5. Mean reconstruction runtime as a function of the number of points
used. The minimal algorithm is used for 6 points and the linear algorithm is
used for 7 or more points.

It has been assumed that the minimal method will require the
fewest iterations for RANSAC convergence, and in addition we
have shown that the minimal algorithm by itself is significantly
faster than the linear algorithm. However, we have speculated
that the robustness to noise gained by the over-determined na-
ture of the linear algorithm may actually lead to superior per-
formance. We first investigated this by analyzing the size of the
largest consensus size as a function of RANSAC trials using
each of the minimal, 7 point linear, and 15 point linear algo-
rithms on a random configuration (Fig. 6). The configuration
consisted of 100 structure points with 80% inliers. The exper-
iment was repeated at three noise levels for ε = {0, 0.5, 1}, and
the RANSAC inlier threshold was fixed at τ = 1.75. The most
interesting observation from these results is that, in the presence
of noise, using a larger number of points allowed RANSAC to
converge to a larger final consensus size.

5.3. Subset size in RANSAC
The following experiments were designed to examine the ef-

fect of varying subset size in RANSAC in further detail. First,
we looked at the accuracy of the linear method as a function
of the number of points n, for n = 7, . . . , 80, to see how many
points are necessary before one reaches diminishing returns in
the accuracy of the reconstructed tensor. We fixed the corre-
spondence error level at ε = 0.5 and generate correspondences
from configurations of 100 points.

Looking at the mean reprojection error on just the fitted data
before and after bundle adjustment (Fig. 7, left) indicates how
close the linear estimate is to the maximum likelihood estimate.
We see that the maximum likelihood estimate is significantly
better for n < 10 points, but with about 15 or more points, the
linear estimate is almost as good as a maximum likelihood esti-
mate. We also looked at how well the remaining data points fit
with this model before and after bundle adjusting using all data
(Fig. 7, right). Here, we see also that a linear estimate from 10-
15 points is typically capable of fitting all the remaining points
very well. Using more points in the initial linear estimate causes
an asymptotic convergence to the true configuration, but the re-
turns are diminishing.

The ideal number of points to use in RANSAC depends upon
both the inlier fraction and the noise distribution. To demon-
strate this we define the RANSAC Rerformance Ratio (PR) to
be the total number of inliers divided by the total runtime. We
then calculated the subset sizes that empirically optimize the
performance ratio over 100 courses of running RANSAC at var-
ious combinations of noise and inlier percentages (Fig. 8). In-
liers were corrupted with normally distributed noise having σ at
the specified level whereas outliers were corrupted with noise
having σ = 50 pixels. The inlier threshold was set automati-
cally at max(0.5, 3σ) and RANSAC was run until at least 95%
of the inliers were found.
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mance ratio of final consensus sizes divided by total runtimes after running
RANSAC 100 times. The minimal 6 point algorithm has a better performance
ratio when there is zero noise, but a linear algorithm using more points gives
superior performance when noise is introduced.

In these synthetic tests, we see clearly that the minimal 6
point algorithm maximizes the performance ratio only for zero
noise. Even with an unrealistically low level of noise (σ0.1
pixels), the linear method has a better performance ratio. In
general, as either the noise level or the inlier fraction is in-
creased, the benefits of using a larger subset size are increased.
However, we note that the noise is relative to scene configura-
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tion, and therefore this table should not be used as a reference
for choosing the subset size of real configurations based on the
noise level and inlier fraction.

In order to see what size performs best on real image data
we generated correspondences by automatically matching Har-
ris [26] corner points using the Normalized Cross Correlation.
For the Bookshelves scene (Fig. 9), we found a total of 1369
triplet correspondences. We plotted the overall consensus size
and runtime of RANSAC as a function of the number of points
(Fig. 9a), with the corresponding performance ratio plotted in
(Fig. 9b). The best performance was found using the 8 point
linear method. We obtained a final consensus size of 1172/1369
points, and after bundle adjustment, the mean squared repro-
jection error was reduced to 0.159661 pixels (relative to the
1148 × 764 images).

Our results on another real scene, the Desk scene, (Fig. 10),
shows similar results; this time we found a total of 1340 triplet
correspondences. The overall consensus size and runtime of
RANSAC as a function of the number of points is plotted in
Fig. 10a, with the corresponding performance ratio plotted
in (Fig. 10b). The best performance was again found using
the 8 point linear method. We obtained a final consensus size
of 1003/1340 points, and after bundle adjustment, the mean
squared reprojection error was reduced to 0.192335 pixels (rel-
ative to the 1024 × 768 images).

6. Conclusions

We have introduced two small improvements to the minimal
6 point algorithm, one being a method for selecting points that
form a stable basis in order to ensure precise results, and the
other being a method for selecting the correct solution when
there are 3 possible solutions.

We have also examined several variations of the linear algo-
rithm in order to the determine the most accurate and efficient
variation. We have shown that an older, lesser used, method
of quasi-linear enforcement of the internal constraints actually
performs best, and that there appears to be no difference in per-
formance between the various methods of trilinear constraint
representation, which leads us to believe that it is best to stick
with the simplest and fastest method.

Contrary to previous results, we show that the linear method
can provide a substantially more accurate estimate than the
minimal method, and is nearly a maximum likelihood estimate
when estimated from more than 10 points. We also show that
using larger subset size in RANSAC with the linear method al-
lows a larger final consensus size to be reached, and in a shorter
overall runtime, despite the fact that runtime for the minimal
method by itself is substantially faster.

Acknowledgements

We thank Dr. Margaret J. Eppstein for her useful comments.

References

[1] B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon, Bundle Adjust-
ment – A Modern Synthesis, in: B. Triggs, A. Zisserman, R. Szeliski
(Eds.), Vision Algorithms: Theory and Practice, vol. 1883 of Lec-
ture Notes in Computer Science, Springer-Verlag, 298–372, URL
http://lear.inrialpes.fr/pubs/2000/TMHF00, 2000.

[2] R. I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,
Cambridge University Press, ISBN: 0521540518, second edn., 2004.

[3] M. Lourakis, A. Argyros, The Design and Implementation of a
Generic Sparse Bundle Adjustment Software Package Based on the
Levenberg-Marquardt Algorithm, Tech. Rep. 340, Institute of Com-
puter Science - FORTH, Heraklion, Crete, Greece, available from
http://www.ics.forth.gr/ lourakis/sba, 2004.

[4] D. Nistér, An Efficient Solution to the Five-Point Relative Pose Problem,
IEEE Trans. Pattern Anal. Mach. Intell. 26 (6) (2004) 756–777, ISSN
0162-8828, doi:http://dx.doi.org/10.1109/TPAMI.2004.17.

[5] B. Triggs, Matching constraints and the joint image, in: ICCV ’95: Pro-
ceedings of the Fifth International Conference on Computer Vision, IEEE
Computer Society, Washington, DC, USA, ISBN 0-8186-7042-8, 338,
1995.

[6] L. Quan, Invariants of Six Points and Projective Reconstruc-
tion From Three Uncalibrated Images, IEEE Trans. Pattern
Anal. Mach. Intell. 17 (1) (1995) 34–46, ISSN 0162-8828, doi:
http://dx.doi.org/10.1109/34.368154.

[7] S. Carlsson, D. Weinshall, Dual Computation of Projective
Shape and Camera Positions from Multiple Images, Int. J.
Comput. Vision 27 (3) (1998) 227–241, ISSN 0920-5691, doi:
http://dx.doi.org/10.1023/A:1007961913417.

[8] R. Hartley, G. Debunne, Dualizing Scene Reconstruction Algorithms, in:
SMILE’98: Proceedings of the European Workshop on 3D Structure from
Multiple Images of Large-Scale Environments, Springer-Verlag, London,
UK, ISBN 3-540-65310-4, 14–31, 1998.

[9] R. Hartley, N. Dano, Reconstruction from six-point sequences, in: Com-
puter Vision and Pattern Recognition, 2000. Proceedings. IEEE Confer-
ence on, vol. 2, 480 –486 vol.2, doi:10.1109/CVPR.2000.854888, 2000.

[10] R. Hartley, A linear method for reconstruction from lines and points,
Computer Vision, IEEE International Conference on 0 (1995) p. 882, doi:
http://doi.ieeecomputersociety.org/10.1109/ICCV.1995.466843.

[11] A. Shashua, M. Werman, Trilinearity of three perspective views and its
associated tensor, in: ICCV ’95: Proceedings of the Fifth International
Conference on Computer Vision, IEEE Computer Society, Washington,
DC, USA, ISBN 0-8186-7042-8, 920, 1995.

[12] R. Hartley, Minimizing algebraic error in geometric estimation problems,
in: Computer Vision, 1998. Sixth International Conference on, 469 –476,
doi:10.1109/ICCV.1998.710760, 1998.

[13] M. A. Fischler, R. C. Bolles, Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography, Commun. ACM 24 (1981) 381–395,
ISSN 0001-0782, doi:http://doi.acm.org/10.1145/358669.358692, URL
http://doi.acm.org/10.1145/358669.358692.

[14] P. H. S. Torr, A. Zisserman, Robust parameterization and computa-
tion of the trifocal tensor, Image and Vision Computing 15 (8) (1997)
591 – 605, ISSN 0262-8856, doi:DOI: 10.1016/S0262-8856(97)00010-3,
british Machine Vision Conference.

[15] M. E. Spetsakis, J. Aloimonos, Structure from Motion Us-
ing Line Correspondences, International Journal of Computer
Vision 4 (3) (1990) 171–183, doi:10.1007/BF00054994, URL
http://dx.doi.org/10.1007/BF00054994.

[16] J. Weng, T. S. Huang, N. Ahuja, Motion and Structure from Line Corre-
spondences; Closed-Form Solution, Uniqueness, and Optimization, IEEE
Trans. Pattern Anal. Mach. Intell. 14 (3) (1992) 318–336, ISSN 0162-
8828, doi:http://dx.doi.org/10.1109/34.120327.

[17] A. Shashua, Algebraic Functions For Recognition, IEEE Trans. Pat-
tern Anal. Mach. Intell. 17 (8) (1995) 779–789, ISSN 0162-8828, doi:
http://dx.doi.org/10.1109/34.400567.

[18] R. I. Hartley, Lines and Points in Three Views and the Trifocal Tensor,
Int. J. Comput. Vision 22 (2) (1997) 125–140, ISSN 0920-5691, doi:
http://dx.doi.org/10.1023/A:1007936012022.

[19] P. Sampson, Fitting Conic Sections to ’Very Scattered’ Data: An Iterarive
Refinement of the Bookstein Algorithm, Computer Vision, Graphics, and
Image Processing 18 (1) (1982) 97–108.

12



 900

 950

 1000

 1050

 1100

 1150

 1200

 5  10  15  20  25  30

C
o

n
s
e
n

s
u

s
 s

iz
e

R
u

n
ti

m
e

Subset size

Bookshelves Scene

Consensus size

Runtime

(a)

 500

 1000

 1500

 2000

 2500

 3000

 5  10  15  20  25  30

C
o

n
s
e
n

s
u

s
 s

iz
e
 /

 R
u

n
ti

m
e

Subset size

Bookshelves Scene - Performance Ratio

(b)

(c) (d) (e)

Figure 9. Example reconstruction using the trifocal tensor. The inlier threshold was automatically determined at 1.01605 pixels, and 1172 out of 1369 triplet
correspondences were found as inliers. The mean squared reprojection error is 0.159661 pixels (in comparison, the image size is 1148 × 764 pixels).
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Figure 10. Example reconstruction using the trifocal tensor. The inlier threshold was automatically determined at 1.09729 pixels, and 1003 out of 1340 triplet
correspondences were found as inliers. The mean squared reprojection error is 0.192335 pixels (in comparison, the image size is 1024 × 768 pixels).
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