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Abstract

Estimating the route taken through a street graph from a sequence of consecutively geotagged coordinates is a problem
with several possible applications, such as accurately matching panoramas to the streets that they correspond to for street view
presentation. In this paper, we show how several different statistical priors can be combined into a Bayesian model that can be
efficiently optimized using Belief Propagation (BP).

1 Introduction
In building a system to display street-view level imagery to be
associated with turn-by-turn routing instructions from a set of
geotagged panoramas, it was initially assumed that selecting
the best panorama to display any particular view was a deci-
sion that could be made based purely on the geotagged coor-
dinates of the panorama.

Although largely true, it was found that this assumption
can sometimes be problematic. In particular, it is ambiguous
from the geotagged coordinates which road a panorama was
taken from, if the panorama is located at the spatial intersec-
tion of two or more roads. This can be problematic when these
roads are at different layers, such as commonly occurs when
a road crosses underneath a highway, or in the more extreme
case when there is a tunnel that lies directly underneath a sur-
face level road.

Other ambiguous cases may arise from discrepancies in
the geographic localization of the panoramas vs. the road
database. For example, if there is a highway that runs closely
parallel to a surface level road, then a slight discrepancy be-
tween the GPS coordinates measured from the panoramas and
the location of the two roads as recorded in the database might
cause the panoramas to be closer to the wrong parallel road.
Similarly, if the panoramas were acquired by driving down a
side street off a main road, if the side street is shifted by a
small amount, then those panoramas might be closer to the
main street than to the side street.

As a result of these aforementioned ambiguities, our ini-
tial attempts to generate consecutive street level views corre-
sponding to a route through the street database that were based
purely on geotagged coordinates would sometimes correct a
panorama that was clearly taken from the wrong street.

It may seem that the problem might have been solved
by the collection of additional metadata about the panora-
mas, such as street name. However, street names can also
be ambiguous. Thus, unless the panoramas are acquired and
geotagged with unique street identifiers from the same street
database that is later used for routing purposes, the problem
persists.

For our particular problem, the only information available
beyond geotagged coordinates of each panorama was an in-
dex. Although the panorama indexing scheme was unknown
to us, we observed that contiguous subsequences of indices al-
ways corresponded to a sequence of panoramas in the order
that they were acquired. Therefore, our overall approach was
to match these subsequences of coordinates to the streetmap
database by exploiting our knowledge of street connectivity.
To this end, we have developed a novel maximum a posteriori
(MAP) approach to optimally assigning panoramas to streets.

Generically, our approach can be used to match any se-
quence of geographic coordinates to a street map database by
exploiting the connectivity of streets. This could be useful for
other related problems, such as interpreting a driver’s course
through a street map, or matching a route that was computed
from one street map database into another street map database.

2 Methods

2.1 Problem Description

Let the subsequence of n ordered coordinates to be matched
be represented by r = (x1,x2, . . .xn), where x ∈ R2. Al-
though these coordinates are originally represented as latitude-
longitude pairs, we first transform all coordinates into a local
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Euclidean coordinate frame using the latest World Geodetic
System (WGS84).

The street map is represented by a graph G = (V,E) with
vertices V and edges E. An edge e = (a, b) is a directed con-
nection from vertex a to vertex b. For each edge e ∈ E there is
an associated way we that is an ordered list of ne coordinates
xe ∈ R2, we = (xe1,x

e
2, . . .x

e
ne

). Two ways we and we′ are
connected if there exists edges e = (a, b) and e′ = (b, c).

We refer to an edge e as the generator of a coordinate x
if this coordinate was geotagged while actually traversing the
associated way we. For a particular coordinate x, let the true
generator be denoted by ex. Thus, the full set of generators is
represented by Θ = (ex1 , ex2 , . . . exn).

Our assumptions are as follows:

1. A street that is closer to a coordinate has a higher likeli-
hood of being the matching street for that coordinate.

2. A street that has a similar tangent vector at its closest
point to the coordinate to the tangent vector of the se-
quence at the coordinate has a higher likelihood of being
the matching street for that coordinate.

3. It is highly likely that two consecutive coordinates will
be on the same street.

4. It is highly unlikely that two consecutive coordinates
will match streets that are not directly connected in the
graph structure, as this is a non-viable path through the
graph structure. However, we must admit for this possi-
bility, because a vehicle may have traveled off road, or
the graph structure may be imperfect.

5. It is not unlikely that two consecutive coordinates will
match streets that are directly connected in the graph
structure.

2.2 Statistical Model
The first two assumptions can be independently treated as prior
probability models. Based on the first assumption only, if we
assume that geotagging measurement error is normally dis-
tributed with standard deviation σ, then the probability (or
likelihood) of measuring a coordinate x while traversing edge
e is given by

P1(x|e) =
1

2πσ2
e−d(x,we(x))2/(2σ2), (1)

where we(x) is the interpolated coordinate on way we that is
closest to x.

Based on the second assumption only, if we assume that
the angle between the tangent vector of successive geotagging
measurements and the tangent vector of the way at the closest

point to the measurement is normally distributed with standard
deviation σt, then the likelihood of measuring a coordinate x
while traversing edge e is given by

P2(x|e) =
1

2πσ2
e−(Tr(x)·Twe (we(x)))/(2σ2

t ), (2)

where Tr(x) is the tangent vector of sequence r computed at
the point x on r.

The latter three assumptions can be encoded via a piece-
wise probability function that describes the probability of oc-
currence for two successive street edges,

P3(e, e′) =


1 e = e’
1− ε we and we′ are connected.
ε otherwise.

, (3)

for some small value of ε << 1. Taking into account the
prior probabilities from (1) and (2) as well as the likelihood
from (9), the combined posterior probability of the complete
sequence of measurements is given by

P (r|Θ) =

n∏
i=1

P1(xi|exi)P2(xi|exi)

n∏
i=2

P3(exi , exi−1). (4)

The log-posterior probability is

logP (r|Θ) =

n∑
i=1

(logP1(xi|exi
) + logP2(xi|exi

)) (5)

+

n∑
i=2

logP3(exi
, exi−1

) (6)

= −
n∑
i=1

(
1

2σ2
d(x, we(x))2 +

1

2σ2
t

(Tr(x) · Twe
(we(x)))

)
(7)

−
n∑
i=2

D(exi , exi−1) + c (8)

for some constant value c, where

C(e, e′) =


0 e = e’
τ1 we and we′ are connected.
τ2 otherwise.

, (9)

and τ1 = − log(1 − ε) is some ‘large’ value and τ2 =
− log(1 − ε) is some ‘small’ value. Thus, the maximum a
posteriori (MAP) assignment is given by
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Θ̂MAP = argmin
Θ

[
n∑
i=1

(
1

2σ2
d(x, we(x))2 (10)

+
1

2σ2
t

(Tr(x) · Twe(we(x)))

)
+

n∑
i=2

C(exi , exi−1)

]
.

(11)

2.3 Belief Propagation
The minimization of (11) can be accomplished optimally via
belief propagation (BP). This is an iterative method of message
passing, wherein each iteration, each node sends a “message”
to each of its neighboring nodes informing that neighbor of the
estimated cost of adopting each possible label. Each iteration
of BP takes O(nk2) time, where n is the length of the subse-
quence r and k is the number of possible labels (i.e., nearby
streets) [1]. BP has been proven to converge to the optimal
solution on acyclic networks such as this.

Specifically, if we let P be the set of all x nodes, and fp
be the label (i.e., edge) assigned to each p ∈ P , and N (p) be
the set of all nodes adjacent to x (i.e., xi−1 and xi+1), and let
Cp(fp) be the negative log prior probability of p having label
fp according to (1) and (2), and let C(fp, fq) be the nega-
tive log likelihood of consecutive labels fp and fq according
to (9), then (11) may be written equivalently as

E(f) =
∑
p∈P

Cp(fp) +
∑

p∈P,q∈N (p)

C(fp, fq), (12)

where E(f) to be minimized is just the log-posterior probabil-
ity (minus the constant) (8).

Let mt
p→q(fq) be the message sent from p to q with label

fq in iteration t. Then the update rule is

mt
p→q(fq) = min

fp

C(fp, fq) + Cp(fp) +
∑

s∈N (p)

mt−1
s→p(fp)

 .

(13)

Finally, after sufficient iterations, each node q is assigned
the label that minimizes the errors in the final iteration T ,

f ′q = argmin
fq

Cp(fp) +
∑

p∈N (q)

mT
p→q(fq)

 . (14)

2.4 Preliminary Results
The described method has been empirically observed to per-
form quite well on our data set. Some example results are

displayed visually by showing each consecutive segment of a
subsequence that has been assigned to the same way in a con-
sistent color (Figure 1). Thus, it can be seen that panoramas
are properly matched to streets, and when the route followed
doubles back on itself, the subsequences are (correctly) classi-
fied separately. We demonstrate also the case of a rather large
discrepancy where the street map has an incorrect placement
of a side street, yet panoramas are still correctly assigned to
that street (Figure 2).

Figure 1: Example of subsequence with randomly colorized
subsequences of consecutive panoramas that matched to the
same graph edges (streets).

Figure 2: Example of subsequence with randomly colorized
subsequences of consecutive panoramas that matched to the
same graph edges (streets). Note the correct classification of
panoramas to the side street despite, in this case, the large dis-
crepancy in position of the side street.
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