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Abstract

A common need in statistics is to assess whether two samples come from the same underlying population distribution. Existing
two-sample tests often make limiting a priori assumptions, or cannot be easily generalized to multivariate data. We derive a new
multivariate two-sample test that makes no a priori assumptions, has higher statistical power than previous tests, has better runtime
performance, has an easily understood geometrical interpretation, and is simple to implement.
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1. Introduction

A two-sample test is a statistical test that attempts to deter-
mine if two samples come from the same population. One of
the simplest and most commonly used two-sample tests is the
Student’s t-test [25], which makes the a priori assumptions that
the samples are normally distributed and homoscedastic (i.e.,
that they have equal variance), thereby reducing the problem
to a question of whether the population means of the two sam-
ples are equal. This test can be easily generalized to multi-
variate data to test for equality of the mean vectors, known as
Hotelling’s t-squared test.

Whereas the assumption of normality can sometimes be
a reasonable assumption based on the problem domain, ho-
moscedasticity can rarely be assumed, and hence must usually
be validated by some other test. From a pedantic standpoint, ho-
moscedasticity is only truly satisfied when the null-hypothesis
is true.

Nonetheless, the two-phase approach of first testing for (ap-
proximately) equal variance and then testing for equal mean
is often sufficient for making simple binary judgements of
equality between two distributions. However, it is clearly sub-
optimal in comparison to a test that considers all information
simultaneously in order to make a single decision. Moreover,
if a real-valued metric for overall similarity is needed for some
purpose other than binary hypothesis testing, such a two-phase
approach is inapplicable.

The Behrens-Fisher problem (BFP) [1, 9], which also as-
sumes normality, and can also be generalized to multivariate
data [15, 2], is sometimes thought to overcome the limiting as-
sumption of homoscedasticity. In fact, the assumption of ho-
moscedasticity is merely replaced with the even more unrea-
sonable a priori assumption of heteroskedasticity. As pointed
out by Sawilowsky [20], there are arguably no practical circum-
stances under which this assumption is reasonable, because if
the samples do come from the same population, they should
have equal variance.

Clearly, it would be preferable to have a test that does

not make any a priori assumptions about the sameness of
the population variances. There are several well-known two-
sample tests in this category, such as the non-parametric two-
sample Kolmogorov-Smirnov (KS) test [17, 24], the two-
sample Anderson-Darling test [19], Wilcoxon’s signed-rank
test [28] and the Mann-Whitney U-test [18]. However, unlike
the t-test and the BFP, these statistics require the random vari-
ables in each sample to be ordinal, and hence they do not nat-
urally generalize to multivariate data (although there have been
some marginally successful attempts [8, 16]).

Indeed, there are not many two-sample tests that are designed
for multivariate data. Perhaps the first such test was made by at-
tempting to generalize the classic Smirnov test [4, 10], followed
by several variants of the non-parametric nearest neighbor (NN)
test [21, 12, 11]. Zech and Aslan [29] proposed a method based
on minimum energy [29], and more recently the non-parametric
E-test was proposed [26].

In this manuscript, we derive a new test statistic that does
not make any a priori assumptions about the variances, and
greatly outperforms these aforementioned existing multivariate
two-sample tests. It is simply generalized to multivariate dis-
tributions, and can also be generalized for non-parametric data,
making the assumption of normality optional instead of manda-
tory. It has better receiver operating characteristics (ROC) and
higher statistical power than previous multivariate two-sample
tests, making it more reliable for small sample sizes. Under the
assumption of normality, it has linear time complexity (which
is superior to previous algorithms). Finally, it has an easily un-
derstood geometric interpretation.

2. Approach

Given a sample of independent and identically distributed
(IID) random variables S A = {a1, . . . , an1 } from distribution A
and a sample of IID random variables S B = {b1, . . . ,bn2 } from
distribution B, where ai ∈ Rd and bi ∈ Rd, our objective is to
assess the statistical significance of the difference between the
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distributions A and B. Thus, the null hypothesis is H0 : A = B
and the alternative is Ha : A , B.

Any probability density function (PDF) denoted by f (x) may
be equivalently interpreted as the set of all points under the
probability density curve,

{(x, y) ∈ R2| f (x) > y}. (1)

Given two sets S 1 and S 2, the Jaccard [14] distance
J(S 1, S 2) ∈ [0, 1] is given by

J(S 1, S 2) = 1 −
|S 1 ∩ S 2|

|S 1 ∪ S 2|
, (2)

or in plain terms, it is 1 minus the ratio of the overlap (intersec-
tion) area to the total (union) area.

The basic approach of our method is to estimate the two sam-
ple distributions, interpret these distributions as sets, and then
measure similarity between the sets using the Jaccard distance
[14].

When PDFs are represented as sets according to (1), the area
of the intersection is given by integrating over the minimum
between the two PDFs, and the area of the union is given by
integrating over the maximum (Fig. 1); thus, given two PDFs
PA and PB, the Jaccard distance between the two distributions
is given by

1 −

∫ ∞
−∞

min{PA(x), PB(x)} dx∫ ∞
−∞

max{PA(x), PB(x)} dx
. (3)

(a) (b)

Figure 1. Example of the intersection (left) and union (right) between the
set-representation of two normal probability density functions.

It is straightforward to generalize (1) for multivariate dis-
tributions. Given a multivariate PDF f (x) where x ∈ Rd, the
equivalent set representation is

{(x, y) ∈ Rd+1| f (x) > y}, (4)

and hence (3) is generalized by simply integrating over all di-
mensions,

1 −

∫ ∫
· · ·

∫
Rd min{PA(x), PB(x)} dx∫ ∫

· · ·
∫
Rd max{PA(x), PB(x)} dx

. (5)

In some cases, this infinite integral can be computed exactly;
for example, when PA and PB are univariate normal distribu-
tions, (3) can be computed from the normal CDF after finding
the roots of PA(x) − PB(x).

When PA and PB are not both normal, or when d > 1, com-
putation of an exact solution is no longer practical. However, a
good approximation can be computed using numerical integra-
tion. An approximation to the integral of any function f (x) is
given by

∫
f (x)dx ≈

1
n

n∑
i=1

f (xi)
p(xi)

, n � 1, (6)

where xi ∼ p, for some arbitrary sampling distribution p [23,
p.289].

This approximation becomes increasingly accurate as n →
∞, and converges faster when p is similar to f . A logical choice
for p is to use the pooled sample distribution, because this
tightly envelopes both the intersection and union functions to
be integrated. Furthermore, it makes sense to choose a number
of Monte Carlo samples proportional to the number of pooled
samples so that the integration accuracy does not lag behind the
information content of the samples.

It would be computationally wasteful to attempt to derive a
parametric model for p based on the pooled samples, only to
draw this many samples from it again. Thus, we propose to
ignore p and simply use the pooled sample points as the Monte
Carlo integration points; that is, if we denote the pooled sample
by S C = S A ∪ S B = {c1, . . . , cn}, then (5) is approximated by

1 −
1
n
∑n

i=1 min{PA(ci), PB(ci)}
1
n
∑n

i=1 max{PA(ci), PB(ci)}
. (7)

After cancelling out 1/n, we obtain a statistic of

J(S A, S B) = 1 −
∑n

i=1 min{PA(ci), PB(ci)}∑n
i=1 max{PA(ci), PB(ci)}

. (8)

If one assumes multivariate normal populations, then

PA(x) = e−
1
2 (x−µA)TΣ−1

A (x−µA)/
( √

(2π)d |ΣA|
)

, (9)

where µA and ΣA are the sample mean and covariance of S A

(and similarly for PB). The advantage of using a simple mul-
tivariate model is that these distributions can be estimated and
sampled very efficiently. Moreover, because the multivariate
normal has very few degrees of freedom, it will have high sta-
tistical power and therefore perform very well on small sample
sizes (i.e., perhaps less than 10).

When the assumption of normality is too restrictive, (8) may
be easily generalized into a non-parametric statistic by using a
multivariate kernel density estimate (KDE) for PA, PB; that is,

PA(x) =
1

n1
√
|H|

n1∑
i=1

K
(

x − ai
√
|H|

)
, (10)

where K(.) is the kernel, typically the standard multivariate nor-
mal kernel,
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K(x) = (2π)−d/2 exp
(
−

1
2

xTx
)

, (11)

and H is the bandwidth matrix, which can be chosen in a data-
dependent fashion using various automatic methods [5, 27, 6].
The KDE for PB is defined similarly.

2.1. Permutation Distribution

The significance of the test statistic (8) may be assessed by
calculating the probability (p-value) of obtaining a statistic at
least as extreme as the one observed under the null hypothesis.
The null hypothesis may then be rejected if the p-value is less
than the desired significance level of α = 0.05, for example.

A simple and general method of obtaining a p-value that can
be used with any test statistic is to use the permutation distri-
bution (see Efron [7] and Higgins [13, p.31]). Under the null
hypothesis, the populations A = B = C and hence S C is a set
of IID random variables; thus, one should be able to randomly
rearrange the samples without changing the expected value of
the test statistic. Specifically, for the bth permutation sample,
one can randomize the order of S C , reassign the elements to S b

A
and S b

B such that #S b
A = #S A and #S b

B = #S B, and then compute
the test statistic T b between S b

A and S b
B.

Because larger values of the test statistic indicate divergence
from the null hypothesis, the permutation estimate of the p-
value is then

p = P(T b ≥ T ) = lim
B→∞

1
B

B∑
b=1

I(T b ≥ T ), (12)

where I(.) ∈ {0, 1} is the indicator function, and B is the number
of permutation samples.

In this paper, we always use this approach (with B = 1000)
for converting test statistics into p-values.

2.2. Time Complexity

Using the multivariate normal model, computation of the
means and covariances in (9) is linear in the sample size. Inver-
sion of the covariance matrix may be pre-computed and takes
O(d3) time. At this point, evaluation of (8) is again linear in the
sample size. Thus, the total time complexity is just O(d3 + n).
For most practical problems d ≤ 3, and can be regarded as a
constant.

The non-parametric version of the J-statistic requires evalu-
ating the multivariate KDE at each point in the samples. The
multivariate KDE can be most efficiently evaluated by solv-
ing the fixed-radius near neighbor problem [3] in order to find
all sample points within the support region of the bandwidth
matrix. Using a kd-tree structure this can be done in amor-
tized O(log n) time, leading to a total amortized runtime of
O(n log n).

The nearest neighbor test requires finding the kth nearest
neighbor for each of the n sample points, which can be com-
puted in O(log n) amortized time after building a kd-tree[22].

Thus, the overall amortized runtime is O(n log n), which is the
same as the time needed to build the kd-tree. It may be easily
verified that the time complexity of the E-statistic [26] is O(n2).

3. Experiments & Results

3.1. Runtime Performance

Runtime performance of each method was measured on an
Intel Core i7-2600 CPU (2.4 GHz) machine. From the linearly
scaled plot (Fig. 2, top) it is evident that the J-test has by far the
best performance on large sample sizes, with a runtime of 0.014
seconds for 70,000 samples. The NN-test was the next fastest
at 4.67 seconds. In contrast, the E-test and non-parametric J-
test were comparatively very slow, taking 189 seconds and 75
seconds, respectively.

From the log-log plot of performance (Fig. 2, bottom), we
see that, despite having the highest time complexity, the E-test
actually has the best performance for extremely small sample
sizes (i.e., less than 200). This is because the algorithm is so
simple that there is almost no memory or runtime overhead.
However, the algorithms are all so fast with these small number
of samples that the advantage is inconsequential.
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Figure 2. Runtime performance as a function of sample size on 3-
dimensional multivariate data. Top: linear scale. Bottom: log-log scale.

3



3.2. Statistical Performance

We begin with a graphical analysis showing the raw statistic
response and p-values in comparison to other univariate two-
sample statistics (Fig. 3). We use the standard normal distri-
bution as a reference for population A and then vary the mean
and standard deviation for population B. We compare the J-
test (assuming normality), the non-parametric (NP) J-test (us-
ing the KDE), E-test, the NN-test using 3rd nearest neighbors
(as recommended in Szekely and Rizzo [26]) and the KS-test.

In the first row, we show the raw statistics using a small sam-
ple size of n1 = n2 = 10. In the second row, we increase the
sample sizes to n1 = n2 = 100. The third and fourth rows
show the corresponding p-values corresponding to the first and
second rows, respectively.

As expected, each statistic has a minimum value when µ2 =

0, σ2 = 1 because this is when the two populations are actually
equal. However, the profile of the statistic as the populations
diverge is very different. The J-test increases most rapidly as
the standard deviations diverge, whereas, for example, the KS-
test is less sensitive. The p-values calculated from each statistic
with this number of samples look approximately equivalent, be-
ing essentially a delta function that properly rejects the null hy-
pothesis when the distributions are unequal, although the NN-
statistic has a notably less-well defined peak.

The difference between test statistics is more apparent for
smaller sample sizes (top row), where it can be seen that the
statistics have different levels of ‘background noise.’ This back-
ground noise is effectively a visual indicator of statistical power,
because it shows how sensitive they are to random chance.
The parametric J-test has the least background noise, followed
closely by the non-parametric J-test, then the E-test, NN-test,
and KS-test.

Formally, the statistical power of a test is the probability of
rejecting the null-hypothesis at a particular statistical signifi-
cance level for a particular magnitude of the difference between
populations. We make the differences in statistical power more
explicit by plotting power as a function of the difference in stan-
dard deviation for each statistic, based on 1000 replications, us-
ing a sample size of n1 = n2 = 10 and a significance level of
α = 0.05. We fix σ1 = 1 and let σ2 = 10, 8, 6.4 . . . 1.342 in
multiplicative increments of 0.8 (see Fig. 4).

Our results confirm what was visually apparent from Fig. 3:
that the J-test (either parametrically or non-parametrically) has
the highest statistical power for detecting a change in standard
deviation; this is followed by the E-test and NN-test which have
approximately equal statistical power, and finally the KS-test,
which has significantly lower statistical power.

All other things beings equal, a statistic with higher statisti-
cal power is superior because it can be used to detect a change
from a smaller sample size. Thus, for a given statistical power
of 0.8, for example, we can calculate the minimum number of
samples necessary to detect a change in the standard deviation
by iteratively increasing the sample size and re-computing sta-
tistical power until the desired threshold is exceeded. Using
this approach, we have calculated the minimum sample size to
detect a change in standard deviation using each test in Fig. 6.
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Figure 4. Statistical power for detecting a change from the standard normal
distribution at a significance level of α = 0.05, estimated from 1000 replica-
tions, using a sample size of n1 = n2 = 10.

As the sample standard deviations converge (that is, as σ2
approaches σ1 = 1 from the right), the number of samples
required to detect a change grows faster than exponentially.
Due to computational limitations, we were not able to ac-
quire enough samples to detect the most subtle difference of
σ2 = 1.34 using the NN-test, so this data point is omitted from
the plot.

For relatively large differences in the standard deviation, for
example when σ2 = 10, most tests require 6-9 samples, except
for the NN-test which requires almost 20 samples. However,
for more subtle differences in standard deviation, the change in
the number of samples is more significant. For example, when
σ2 = 1.34, in order to achieve power ≥ 0.8 with a significance
level of α = 0.05, the J-test requires a sample size of about 100,
the non-parametric J-test requires a sample size of about 150,
the E-test requires a sample size of about 240, and the KS-test
requires a sample size of about 400.

Finally, we examine statistical power in higher dimensional
problems, where the KS-test is no longer applicable. Specifi-
cally, we use d = 3 with a standard trivariate normal reference
distribution. We compare the statistical power of the J-test, the
E-test and the NN-test for their ability to detect a change in
the mean-vector, the overall scale of the covariance matrix, and
the rotation of the covariance matrix about the z-axis. For this
latter test, we use an anisotropic reference distribution having
covariance Σ1 = diag(102, 1, 1). Statistical power is assessed
based on 1000 replications and the null-hypothesis is rejected
at a significance level of α = 0.05.

We observe that the E-test has a minor advantage in statistical
power for detecting changes in the mean vector (Fig. 5, left).
For detecting changes in the overall scale of the covariance ma-
trix, the J-test is significantly more powerful, and the E-test
and NN-test are about the same (Fig. 5, middle). Finally, we
observe that the E-test fails to detect changes in the rotation of
the covariance matrix regardless of sample size (Fig. 5, right);
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the NN-test can detect changes, but is not nearly as powerful as
the J-test, which continues to perform quite well.
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Figure 6. Minimum sample size (n1 = n2) in order to obtain statistical power
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Finally we compare the receiver operating characteristics
(ROC) of the various two-sample tests on both univariate (Fig.
7) and multivariate (Fig. 8) data. In the univariate case, we
generate 1000 unique normal distributions having mean uni-
formly distributed in (−1, 1) and standard deviation uniformly
distributed in (1, 100). We perform 100 trials, and on trial we
randomly select two equal distributions (25% of the time) or
two unequal distributions (75% of the time). We generate 50
random samples from the two selected distributions and then
classify the distributions as either equal or unequal based on
the computed p-value for each test statistic, as we vary the sig-
nificance level from α = 0.01, 0.02, 0.05, 0.1 . . . 0.9.

The multivariate test is performed identically, except that the
distributions are trivariate normal. The random trivariate nor-
mal distributions are constructed starting from a diagonal co-
variance matrix Σ with variances randomly chosen in (1, 100).
We then construct a random rotation R from a random axis and
angle, and rotate the covariance matrix to obtain Σ′ = R−1ΣR.
The mean vector is randomly chosen in the range (−1, 1).

In the univariate case it can be seen that the J-test performs
the best, obtaining the highest true positive rate (TPR) as a func-
tion of false positive rate (FPR), while the KS-test performs the
worst.

In the multivariate case the KS-test is dropped because it does
not work for multivariate data. Here we see that the J-test again
performs the best, this time by an even more significant margin,
and the NN-test performs the worst (when operating at less than
30% false positive rate).
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Figure 7. Receiver operating characteristics (ROC) of the test statistics for
detecting a difference between normal distributions as a function of the sig-
nificance level.
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4. Conclusions

We have shown that previous two-sample tests are often lack-
ing, being either limited to univariate data, or inefficient to cal-
culate on high-dimensional data, or incapable of detecting all
possible types of changes in a normal distribution such as rota-
tion of the covariance matrix.

In order to meet these needs, we have presented the J-
statistic, a multivariate two-sample test that can be used para-
metrically or non-parametrically. Computation of the statistic
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is simple to implement, and can be done in linear time under
the assumption of normality, which is faster than any exist-
ing multivariate two-sample tests. We have shown that the J-
statistic has better receiver operating characteristics (ROC), and
higher statistical power then previous univariate or multivariate
statistics, particularly when it comes to detecting changes in the
standard deviation or ‘rotation’ of the covariance matrix (which
cannot be detected by the previous E-statistic).
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