
Nonlinear Methods

Stuart B. Heinrich
The MITRE Corporation

sheinrich@mitre.org

April 13, 2015

1 Problem

Given a function f : RN → RM with a desired output
of y, the residual error vector is ε = f(x) − y and the
squared error is s(x) = ||ε||2.

2 Method of gradient descent

The gradient of s(x), denoted ∇s(x), is the direction of
steepest ascent (i.e., the direction vector in RN that most
rapidly decreases s(x)). The method of gradient descent
is to take steps of some size α in the direction opposite
the gradient,

xn+1 = xn − α∇s(x). (1)

In order to calculate∇s(x), we first expand the
squared error terms,

s(x) = ||ε||2 (2)

= ||f(x)− y||2 (3)

= (f(x)− y)
T

(f(x)− y) (4)

= f(x)Tf(x)− f(x)Ty − yTf(x) + yTy (5)

= f(x)Tf(x)− 2f(x)Ty + yTy, (6)

where we use the fact that xTy is a scalar, equal to yTx.

Then, the gradient is computed by taking the partial
derivative,

∇s(x) =
∂s(x)

∂x
(7)

=
∂

∂x

(
f(x)Tf(x)− 2f(x)Ty + yTy

)
(8)

=
∂f(x)T

∂x
f(x) + f(x)T

∂f(x)

∂x
− 2

∂f(x)T

∂x
y (9)

= 2
∂f(x)T

∂x
f(x)− 2

∂f(x)T

∂x
y (10)

= 2
∂f(x)T

∂x
(f(x)− y) (11)

= 2JTε, (12)

where J = ∂f(x)
∂x is the Jacobian of f(x).

Using a very small constant value for α would provide
the most reliable convergence to the nearest local minima,
but would be extremely slow. A better method would be
to apply a line-search in the direction of the gradient, or
use a concept of momentum to adjust α after each suc-
cessful reduction in error, and decrease it otherwise.

3 Newton’s method

In one dimensional problems, Newton’s method is an ef-
ficient routine for finding the roots of a function f(x). It
uses the derivative at the current point to estimate the
location of the root (Fig. 1),

xn+1 = xn −
f(xn)

f ′(xn)
(13)

1

Current value

Guessed
root

True root

Figure 1. Newton’s method for root finding

Note that the f(x) in (13) is not comparable to the
f(x) discussed in Section 1, because f(x) was defined as
a transfer function, and the objective was to minimize
s(x), not to find roots.

With that said, at the minimum of any function, the
derivative will be zero, so Newton’s method can also be
used to find the minimum of an arbitrary one-dimensional
function by simply differentiating again. In this case, the
geometrical interpretation is that it fits a local parabola
to the function around the point, and moves to the mi-
mum of the parabola (Fig. 2)

xn+1 = xn −
f ′(xn)

f ′′(xn)
(14)

True error
function

Quadratic
error function
approximation

Current point

Estimated
minimum

True
minimum

Figure 2. Newton’s method for error minimization

Thus, in the one-dimensional case, (14) could be used
to minimize s(x), and it would be the equivalent of gra-

dient descent with a very smart way of choosing α. Ge-
ometrically, α is chosen by finding where the locally ap-
proximated tangent line intersects zero. As opposed to
gradient descent, this is a second-order method of op-
timization because it relies on second order derivatives,
meaning it can find the optimum in fewer iterations.

Newton’s method can be generalized to higher dimen-
sional problems by replacing the derivative f ′(xn) with
the gradient ∇f(xn), and by replacing the reciprocal of

the second derivative 1/f ′′(xn) by
(
∇2f(xn)

)−1
, the in-

verse of the matrix of second order partial derivatives of
f , where ∇2f(xn) = Hf is often called the Hessian ma-
trix. This yields a multi-dimensional version of Newton’s
method,

xn+1 = xn −
(
∇2f(xn)

)−1∇f(xn) (15)

Rather than explicitly computing an inverse (which is
inefficient and numerically unstable), (15) may be rear-
ranged into a linear least squares problem,

∇2f(xn)(xn+1 − xn) = −∇f(xn) (16)

Dropping the subscripts and denoting δ = xn+1 − xn
, this may be written as

Hfδ = −∇f (17)

If we apply (17) to the minimization of s(x) (squared
error) from Section 2, then we can substitute the gradient
from (12) to get

Hsδ = −2JTε (18)

The geometrical interpretation of this method is that
the squared error function s(x) is locally approximated
as a quadratic surface,

s(x + δ) ≈ s(x) +∇s(x)Tδ +
1

2
δT∇2s(x)δ (19)

and the solved update vector δ is the minimum of that
quadratic surface approximation. This is one of the most
efficient known method for minimzing a convex function
(in terms of iteration count).

4 Gauss-Newton method

Unfortunately, it is usually not feasible or computation-
ally practical to compute the Hessian, so (18) cannot be
used. The Gauss-Newton method provides a more practi-
cal alternative by using a local first order approximation
of f(x),

2

f(x + δ) ≈ f(x) + Jδ (20)

Substituting (20) for f(x) in s(x), we obtain an esti-
mate of the squared error at an offset point,

s(x + δ) ≈ ||f(x) + Jδ − y||2 (21)

= ||ε+ Jδ||2 (22)

= (ε+ Jδ)
T

(ε+ Jδ) (23)

= εTε+ εTJδ + δTJTε+ δTJTJδ (24)

= εTε+ 2δTJTε+ δTJTJδ (25)

This approximation is analog to (19) used in Newton’s
method. Noting that s(x) = εTε and ∇s(x) = 2JTε, the
only difference is that 2JTJ is used in place of ∇2s(x).

At the minimum (or maximum) of s(x + δ), all the
partial derivatives will be zero. Therefore, to find the
value of δ that will take us to the minimum, we need to
solve

0 =
∂s(x + δ)

∂δ
(26)

=
∂

∂δ

(
εTε+ 2δTJTε+ δTJTJδ

)
(27)

for δ. Distributing the partial derivative, and applying
the product rule to the last term, this expands to

0 = 2

(
∂

∂δ
δTJTε

)
+

(
∂

∂δ
δT
)

(JTJδ) + (δTJTJ)

(
∂

∂δ
δ

)
(28)

It is known that

∂

∂x

(
xTA

)
= AT ∂

∂x
x (29)

Using (29), (28) reduces to

0 = 2εTJ + δTJTJ + δTJTJ (30)

= 2εTJ + 2δTJTJ (31)

(32)

Transposing and rearranging, we obtain the so-called
‘normal equation,’

2JTJδ = −2JTε (33)

JTJδ = −JTε (34)

This is a linear least squares problem which can be
solved for δ. Notice that this equation is identical to (18),
except that the Hessian is replaced by 2JTJ. For this rea-
son, 2JTJ is known as the Gauss-Newton approximation
of the Hessian.

Geometrically, the Gauss-Newton method uses a local
tangent plane approximation of f(x) which results in a
local quadratic approximation of s(x). It then moves to
the point which minimizes this quadratic approximation.
In contrast, Newton’s method directly approximates the
error function s(x) with a quadratic surface using second
order derivatives, and chooses the update as the mini-
mum of that surface. Thus, both methods compute the
update as the minimum of a quadratic surface, but the
Gauss-Newton method is not a true second order method.
However, it is a good approximation, and faster than most
other first order methods.

5 Levenberg-Marquardt method

The update vector computed by the Gauss-Newton
method is a very large step based on extrapolating the
local gradient far away from the point which the origi-
nal planar function approximation was made. As such,
it is not guaranteed to result in improvement (and could
easily move from one local minima into a different local
minima). Generally, we do not care if we move to an-
other local minima as long as the error is reduced. To
this end, Levenberd modified (34) by adding a damping
term multiplied by a scalar λ,

(
JTJ + λI

)
δ = −JTε (35)

A big advantage of this method is that, in the case
that the original system of equations is singular or near-
singular, the damping parameter can produce a stable
well-conditioned numerical solution.

In the limit as λ goes to zero, (35) becomes equivalent
to the basic Gauss-Newton method. However, in the limit
as λ goes to infinity, the JTJ term becomes overshadowed
by λI, and is closely approximated by

lim
λ→∞

λδ = −JTε (36)

Rearranging, we find that limλ→∞ δ = − 1
λJ

Tε, which
is equivalent to (1) using a very small step size of
α = 1/λ. In other words, by varying λ in (35), one
smoothly transitions between the slow but reliable gra-
dient descent update, and the fast but unreliable Gauss-
Newton update. With this in mind, the idea behind Lev-
enberg’s method is to dynamically adjust λ over time –
whenever an update successfully reduces the error, λ is

3

decreased (making the algorithm more aggressive), and
whenever an update fails to reduce the error, λ is in-
creased, making the algorithm more tentative and taking
steps more similar to the gradient direction.

Marquardt provided the insight that each component
of the gradient can be scaled according to the curvature so
that there is larger movement along directions where the
gradient is smaller, in order to avoid slow convergence
in the directions which have smaller gradients. To this
end, Marquardt replaced the damping matrix from (35)
with the diagonal of JTJ, yielding the popular Levenberg-
Marquardt update equation,

(
JTJ + λ diag(JTJ)

)
δ = −JTε (37)

6 Trust region methods

A limitation of (35) or (37) is that if λ is too small,
the matrix equations must be augmented and re-solved,
which can be very expensive. An alternative is to recog-
nize that the choice of λ effectively chooses a radius, and
that if we can explicitly keep track of the radius within
which the approximation is valid, and only solve for up-
dates within the trust radius, then we can reduce the
number of failed iterations.

In addition, by explicitly managing a trust radius, we
are more likely to stay in the same basin of attraction
that we started with than a highly aggressive method
that pays no need to the step size.

Let m(δ) be the linearized approximation of s(x + δ)
at x. Then given a trust radius ∆, the trust-radius con-
strained update is that which minimizes the error function
constrained within the trust region,

argminδm(δ) subject to ||δ|| ≤ ∆ (38)

Consider the solutoin of (34), which we denote as
δGN . If ||δGN || < ∆, then δGN is the solution of (38).
Otherwise, the solution must be obtained by solving the
damped equation in (35) for some unknown value of λ.
Unfortunately (35) is too expensive to re-solve iteratively
in order to find the optimal λ.

6.1 Powell’s dog-leg approximation

Consider the solution of (35) as a function of λ, written
δ(λ). When λ = 0 the solution is given by δGN , and in
the limit as λ → ∞, the solution will be in the nega-
tive direction of the gradient. Thus, because the curve
is dominated by the gradient direction in one part, and
the direction of the Gauss-Newton solution in the other,
this curve can be fairly well approximated as a piecewise
linear curve with two segments, or “dog leg” (Fig. 3).

gradient
direction

Cauchy
point

Gauss-Newton
solution

Trust
radius

Dog-leg
solution

Figure 3. Example dog-leg intersected with the turst radius

The first linear segment connects x to the point in the
direction of the gradient that minimizes m(δ), called the
Cauchy point, given by

δC = − gTg

gTBg
g, (39)

where g = JTε is (half) the gradient, and B = JTJ is
(half) the Gauss-Newton approximation of the Hessian.

The second leg connects δC to δGN , the unconstrained
solution to the Gauss-Newton equations. Thus, the dog-
leg curve can be written piecewise as

δ(τ) =

{
τδC 0 ≤ τ ≤ 1

δC + (τ − 1)(δGN − δC) 1 ≤ τ ≤ 2
. (40)

It is easy to compute the intersection of the dog-leg
curve with the trust region, and the update vector δ at
this point can be computed as a simple linear interpola-
tion between δC and δGN .

If ||δC || > ∆, then the trust radius is intersected by
the first gradient segment, and the solution of (38) is
given by

δ =
δC
||δC ||

∆. (41)

Otherwise, we must find the intersection between the
sphere of the trust region

||δ − x||2 = ∆, (42)

and the second line segment of the dog-leg,

δ = δC + d
δGN − δC
||δGN − δC ||

. (43)

4

In this case, the solution is given by the positive root
of a quadratic equation,

d = −e+
√
e2 − ||δGN − x||2 + ∆2, (44)

using

e =

(
δGN − δC
||δGN − δC ||

)T

(δC − x). (45)

Finally, the δ that minimizes (38) is given by substi-
tuting (44) back into (43).

To summarize, the dog-leg update is given by one of
three cases:

1. First, solve (34) for δGN . If ||δGN || < ∆, then
δ = δGN is the update.

2. Otherwise, compute the Cauchy point δC . If δC >
∆, then the update is given by (41).

3. Otherwise, the solution is given by substituting
(44) into (43).

6.2 Updating the trust region

After solving for the dogleg update, the trust region size
is increased or decreased adaptively based on a measure of
how good the approximation is. We can use the following
ratio as a heuristic for accuracy of the current quadratic
approximation,

ρ =
s(x)− s(x + δ)

m(0)−m(δ)
(46)

If the approximation was perfectly accurate, then
ρ = 1. If ρ > 1 then the error was reduced more than ex-
pected by the quadratic model, indicating that the model
is working well and the trust region can be expanded.
In contrast, if ρ < 1 then the model predicted a larger
decrease in error than was actually observed, indicating
that the trust region may need to be reduced.

Based on these principles, a common heuristic update
scheme is

∆k+1 =


∆k/4 ρk < 1/4

min(2∆k,∆max) ρk > 3/4 and ||p|| = ∆k

∆k otherwise

(47)

6.3 Initialization and convergence

A common rule of thumb is to initialize ∆0 = ||x0||.
We must also choose values for ∆max. Convergence may
be detected when the reduction in error is below some
threshold, f(xk)− f(xk + pk) < ε.

6.4 Summary

A limitation of Dog-Leg is that if the linear system in
(34) is singular or poorly conditioned, it may not be pos-
sible to compute a good update step. This means that
minimal parameterizations must be used to avoid singu-
larity. Also, it is recommended to use a method such as
perturbed cholesky when solving (34) in order to help
avoid singular conditions. Another limitation is that the
radius ∆ does not scale with the different dimensions (as
in the case of Levenberg-Marquardt), which can lead to
slow convergence in the direction of small gradient direc-
tions.

5

	Problem
	Method of gradient descent
	Newton's method
	Gauss-Newton method
	Levenberg-Marquardt method
	Trust region methods
	Powell's dog-leg approximation
	Updating the trust region
	Initialization and convergence
	Summary

