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ABSTRACT  Neurons in the visual cortex develop receptive fields that are sensitive to oriented 
features in the visual environment.  However, exactly how these features develop in a self-organizing 
way, and how the brain learns to recognize what orientation is represented by a particular neuron, is not 
clearly understood.  Explanations for the development of orientation-selective receptive fields such as 
ICP, PCP, and BCM theory rely on statistical analysis of visual data that is presented in a random or 
ordered fashion.  However, it is unclear how these rules may be implemented biologically. We found 
that orientation-selective receptive fields might be developed from bitmap images under simpler 
learning rules if the action moving the gaze is considered, by analyzing the change in sensory 
stimulation related to movement in an attempt to maintain sensory-invariance.  Because the spatial 
property of the action that maintains sensory invariance directly reflects the feature encoded by the 
orientation-sensitive receptive field, sensory-invariance driven action (SIDA) may provide a better basis 
for conceptualization and learning of receptive fields than previously proposed models.  SIDA has 
already been used to explain the learning of orientation preferences by the brain post-feature 
development by Choe & Bhamidipati under discrete conditions, and we also extend upon this to show 
how SIDA can be used to learn developed orientation-preferences under continuous conditions from 
natural images. 
 
   
1. PHYSIOLOGICAL INTRODUCTION 
TO RECEPTIVE FIELDS  
 
Light entering the eye is focused onto the inner 
layer of the back of the eye by the lens.  This 
layer, the retina, has three principal layers.  
Radiating outwards, they are the Ganglion cell 
layer, the Bipolar cell layer, and the Rod and 
cone cell layer.  The retina is largely 
transparent, and light focused on the retina is 
first detected by the rods and cones in the back 
layer after passing through the first two layers.  
The rods and cones are individually receptive to 
very small points in the visual field, and define 

the lowest level of perceptible visual 
information.  Activation of these cells is relayed 
through the Bipolar cell layer to the Ganglion 
cell layer.  Thus, Ganglion cells have receptive 
fields that are composed of the photoreceptors.  
The Bipolar cell layer has organized lateral 
connections which serve to inhibit the response 
in the Ganglion cell layer, reducing and fine-
tuning the receptive field into center-surround 
patches. 
 
 
 



 
(a) (b) 

Fig. 1  (a) Cross-section of the retina (the inner layer of the eye), showcasing the three principal layers, with the topmost 
layers representing the most radially inward.  Light passes through the Ganglion and Bipolar layers before being detected by 
the rods and cones (photoreceptors), which propagate the signal back through the Bipolar layer to the Ganglion cell layer via 
action potentials.  (b) An abstracted image showing the two kinds of center-surround receptive fields of individual Ganglion 
cells as composed by excitatory and inhibitory dendritic connections from photoreceptors and Bipolar cells.  Figures taken 
from John Wiley & Sons & BrainConnection.com. 
 
The Ganglion cells then propagate this 
information to the thalamus via the optic tract 
by sending action potentials, where it is 
propagated through the ventral / dorsal thalamus 
(LGN) and to the first layer of the primary 
visual cortex (V1).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 2  Simplified image showing how neurons in V1 
have orientation-selective receptive fields.  A line in the 
visual field causes photoreceptors in a linear organization 
to be stimulated, which stimulate Ganglion cells in a 
linear organization.  The activated Ganglion cells send 
signals into the thalamus, through the Lateral Geniculate 
Nucleus (LGN), and strongly stimulate a neuron in the 
visual cortex that has strong synaptic weights to all of the 
neurons carrying the incoming signal.  Figure taken from 
BrainConnection.com. 
 
Thus, neurons in V1 have receptive fields 
composed of individual Ganglion cell receptive 
fields.  By presenting test subjects with various 



images in various locations and measuring the 
activation of neurons in the subject’s brain, the 
receptive fields of V1 neurons have been 

measured, and many of them are selective to 
lines of certain orientations.   
 

 
 

 

Fig.3  An electrode measures the response of a single 
neuron in V1 while visual stimuli is presented to the 
subject on the screen.  By determining the areas of the 
screen where light excites (increases the firing frequency 
of the neuron) and inhibits (reduces the firing frequency), 
the receptive field of the neuron can be mapped.  

 
 

 
 
Fig. 2  Examples of individual neuron receptive field feature maps in cat striate cortex, and their orientation selectivity.  Solid 
isolines represent positively stimulated regions, while dotted isolines represent negatively stimulated regions.  Cross-sections 
of the field map perpendicular to the angle of orientation-selectivity resemble a Gabor function, with alternating positively 
and negatively stimulated regions decaying in intensity from the center.  Figures taken from Jones & Palmer (1987). 
 
There are many neurons with different 
orientation-selective receptive features that map 
to tightly overlapping areas in the visual field, 
allowing for a line of any orientation at any 
coordinate in the visual field to stimulate some 
neurons in V1.  Interestingly, the mapping of 

receptive fields in V1 to the visual field is 
nearly topographical, in that the relative position 
of neurons in V1 roughly corresponds to the 
positions of their receptive fields in the visual 
field. 
 



 
(a) Orientation Preference                                  (b) Ocular Dominance 

 
Fig. 3  (a) This color map indicates patches of overlapping orientation sensitivity measured in a 4mm x 3mm patch of the 
cortical surface in a macaque monkey.  (b) Ocular dominance map of the same area on the cortical surface, showing how 
strongly the cells prefer input from the left (white) vs. right (black) eye.  Figure borrowed from Computation Maps in the 
Visual Cortex (2004). 
 
The neural processes in the brain may perform 
some kind of edge-detection pre-processing on 
visual information, allowing the orientation-
selective V1 neurons to be supplied with edge 
information rather than pure image information.  
Based on the map of stimulated V1 neurons and 
the knowledge of what orientation each neuron 
is selective for, the outlines of shapes in the 
visual field can be reconstructed, which may be 
how the brain is able to form mental images.   
 
The synaptic connections between neurons in 
the retina, thalamus, RTN and visual cortex are 
all dynamically mutable.  Since it is the sum of 
these synaptic connections that determine a 
neuron’s receptive field, receptive fields are 
therefore changeable.   
 
Receptive fields mostly form during the early 
stages of development, and are greatly 
influenced by the environment.  For instance, 
kittens raised in environments lacking lines of 
certain orientation will be inept at recognizing 
lines of that orientation – suggesting that they 
lack orientation-selective neurons for those 
orientations.  However, it has also been shown 
that some rudimentary receptive features have 

already been formed before the eyes are opened.  
These may be explained by retinal waves or 
PGO waves. 
 
2. MOTIVATION 
 
Theoretical models for receptive field formation 
exist, mostly using independent component 
analysis or principal component analysis.  All of 
these models are based on random samplings 
from visual fields and analyzing them to find the 
independent orientation components.  However, 
it is unclear what kind of rules individual 
neurons might follow to bring about this kind of 
behavior as a whole.   
 
Additionally, all of the current methods ignore 
the order that images are sampled in, and hence 
the action of the eye.  We believe that action 
(movement of the eye’s focus) may play an 
important role in the development of these 
receptive fields, and that by considering the 
action, contextual information may be gathered 
that is used in receptive field formation. 
 
Also, existing receptive field formation theories 
do not provide any means for the brain to 



recognize the orientation represented by a 
developed receptive field, and this must be 
accomplished before the brain could meaningful 
interpret sensory data.  Experiments with kittens 
have shown that voluntary action is necessary 
for visual learning, which may be because 
without voluntary action the orientation-
preferences of neurons cannot be learned, or 
because the method that the brain uses to 
develop receptive fields relies on active motion. 
 

 
Fig. 4.  Experiment by Held and Hein in which two 
kittens are attached to a carousel, and one can move and 
the other cannot.  Both kittens receive the same visual 
stimulation, but only the one that is actively moving 
develops normal sensory-motor coordination.  Figure 
taken from Granlund (1999). 
 
 
 
3. METHODS 
 
In order to test the effect of action, we used a 
driver algorithm to traverse the natural image 
after using convolution filters to detect the 
edges.  This driver algorithm operated based on 
four simple rules:  1) maximize the stimulation 
of the most stimulated neuron’s receptive field, 
2) attempt to maintain sensory invariance by 
having the same neuron’s receptive field be 
stimulated repeatedly if possible, 3) try to move 
in the straightest path possible, 4) periodically 

find a new area of interest after some number of 
iterations. 
 
Receptive fields in our model are represented by 
grayscale bitmap images, where individual pixel 
intensities represent the strength of the synaptic 
weight to the Ganglion cell that has a receptive 
field centered at that relative position. 
 
To simulate receptive field formation, we 
originally assigned random noise patterns to 
bitmap images representing the receptive fields 
of each neuron.  Then we used the driving 
algorithm to traverse the convolved image and 
find sample points, and the receptive fields were 
trained to match the visual field at the training 
points using Hebbian learning.   
 
For each training point, only the most stimulated 
neuron was trained (training all fields relative to 
the stimulation level would eventually result in 
convergence of receptive fields).  The 
stimulation of each neuron in our model is 
largely dependent on the “age” of the neuron, 
measured by the number of Hebbian training 
iterations (morphs) that have been done on that 
neuron’s receptive field.   
 
We found that using a superposition of 
decreasing exponentials for the basic function 
worked well; the first exponential provides a 
brief initial period of heightened stimulation 
which allows for rapid diversification so that 
each receptive field quickly assumes a feature 
mimicking the visual field, and the second 
exponential provides a damping force that 
allows the fields to stabilize over time, allowing 
each receptive field to represent a specific 
orientation that can be learned rather than 
continuously mutating orientation preferences. 
 
 
 
 
 



The stimulation function of a receptive field is 
given by 
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where P is the number of pixels in the receptive 
field image, and p is the pixel index in the 
receptive field.  v is the pixel index of the visual 
field that corresponds to p.  m is the number of 
morphs (the number of Hebbian training 
iterations that have been run on this RF).  The 
factors of beta and alpha control the rate of 
sensitivity decay, where beta > alpha.  Alpha is 
a factor that weights the initial stimulation 
exponential higher, and Z is the stable-state 
stimulation factor. 
 
The Hebbian learning function of a pixel in the 
receptive field, applied to all pixels in the 
receptive field for one training iteration, is given 
by 
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where R is a pixel in receptive field, and V is 
the pixel in the visual field that corresponds to 
R.  S is the stimulation level of the receptive 
field.  Sigma is a factor that dramatizes the 
results of training. 
 
In order to learn the orientation of a neuron, the 
basic principle is assumed that it is more 
common to encounter repeating lines if the 
action is parallel to that line.  As the focus point 
traverses the visual field, the sensory-invariance 
factor is continuously measured.   
 
Neurons that maintain high sensory invariance 
in a particular direction of movement are 
adjusted so that their perceived angle matches 
that direction of movement.  If they maintain 
substantial sensory-invariance in more than one 
direction, the weighted average of these 

directions is computed to find the perceived 
orientation. 
 
We found that a Hebbian training algorithm was 
not sufficient for learning this problem, because 
the sample points are path dependent, and it is 
possible to train for a long stretch on 
misrepresentative data.  We found a much more 
reliable method was to keep track of all the 
information in a deformable weight space, 
allowing all the pertinent information from an 
arbitrary amount of data to be stored in a finite 
storage space. 
 
The orientation space [0-360] is divided into N 
equal sections.  Whenever the driver makes an 
action with angle a, the sensory-invariance of 
this action is added to the value in the 
appropriate orientation section. 
 
The sensory-invariance factor is given by 
 

]1[]0[ ss ⋅⋅= αϕ , [3] 
 
where s[x] is the stimulation level of the 
neuron’s receptive field x steps into the past.  
Thus, s[0] is the current stimulation level and 
s[1] is the previous stimulation level.  Alpha is 
an arbitrary scaling factor. 
 
The perceived orientation of any neuron is then 
computed based on this orientation space.  First, 
the weight sum (S) is computed by 
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where P(n) is the value in the orientation space 
of the nth section, and C(n) is the number of 
sample values that have been added into the nth 
section. 
 
Then, the perceived orientation (O) is the 
weighted average of all of the sections meeting 
the minimum threshold contribution (k), 



multiplied by the central angle of that section 
(D).  The equation is given by 
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where P(n) is the value in the orientation space 
of the nth section, C(n) is the number of sample 
values that have fallen within the nth section.  S 
is the weight sum of all sections, S2 is the 
weight sum of all sections where the threshold 
condition k is satisfied.  D(n) is the central angle 
of an orientation section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. RESULTS 
 

 
 

 
(a)      (b) 

Fig. 5.  (a) This natural image of a rock-pile was used for training of receptive field formation and perception of orientation-
selectivity.  The black and white image in (b) is the result after pre-processing the image through a convolution filter to detect 
edges, and is the actual map that was used for training. 
 

 
(a)      (b) 

Fig. 6.  These grayscale images were used for theoretical testing, taking the place of a convoluted real image.  They were 
used to test the theory of perceiving receptive field orientation by correlating sensory-invariance and motion. 
 
 
 
 
 
 



 
Fig. 7.  Resultant receptive feature maps after 2000 training iterations on the image in Fig. 5, without using the sensory-
invariant driver.  Focus points were selected randomly each iteration.  Orientation-selectivity is apparent in fields (b) and (e), 
but not in the other fields.   
 

 
Fig. 8  Resultant receptive feature maps after 2000 iterations on the image in Fig. 5, using a sensory-invariant driving 
function to sample the image.  Orientation-selectivity with very good sparsity is apparent in all fields except for field (a), 
which demonstrates a vague circular pattern. 
 

 
Fig. 9  After 320 iterations without using a driving function, the resulting feature maps are scrambled and only vaguely 
suggest orientation selectivity in some cases.  Training was done on the image in Fig. 5. 
 

 
Fig. 10  After only 450 iterations using a driving function, the feature maps using a driving function are already quite mature, 
and are unlikely to benefit from further training.  Although the figure does not show it, the field maps were nearly at this state 
with 150 less iterations.  Training was done on the image in Fig. 5. 
 



 
Fig. 11  Artificially generated receptive fields for use in simulation to attempt to learn orientation-selectivity via correlating 
sensory-invariance to motion of focus point on visual field.  Actual orientation-selectivities of fields are labeled under the 
images.  White areas represent areas that are stimulated by light, dark areas are stimulated by darkness, and gray areas are 
neutral. 
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Fig. 12  Learned values of orientation-selectivity of four optimally developed receptive fields, by correlating sensory-
invariance with movement over a simple grid visual field (Fig 6, b).  The graph shows nearly ideal learning of the receptive 
fields oriented at 0, 45, and 90 degrees.  The learned value for the receptive field representing 135 is perceived to be low.  
The rapid changes in perceived orientation are due to the threshold k in Eq. 5. 
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Fig. 13  This graph is similar to Fig. 7, except that this time a grid containing angled lines is used (Fig 6, a).  The learned 
values over time finally approach the correct values, however the perceived value for the 135 degree receptive field is 
somewhat high, and the edtimate for the 45 degree receptive field takes a long time to correct itself. 
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Fig. 14  This graph was generated under the same conditions as the graph in Fig. 8, but the movement path is different.  This 
shows how the effectiveness of the algorithm is dependent on the path traveled and not just correlating sensory-invariance.  
Additionally, the learned orientations are less accurate than they were in Fig. 8. 
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Fig. 15  This graph shows the results of attempting to learn the orientation-selectivity of well-formed neurons by correlating 
sensory-invariance with focus movement while traversing a real-image visual field (Fig. 5).  The orientation of each field is 
learned to be higher than they actually are except for the 45 degree field.  The relative order of orientations is at least learned 
properly for the majority of the training, until the end when the 0 and 45 degree angles switch. 
 
 
5. DISCUSSION 
 
In order to evaluate the quality of the receptive 
field maps that we generated, we consider the 
following three properties: orientation 
preference, sparsity, and contrast.  By 
orientation-preference, we mean that the active 
regions of the field exhibit a line of some 
specific orientation and translation.  By sparsity, 
we mean that the orientation-preferences among 
the set of fields are sparsely distributed from 0-
360 degrees.  Finally, by contrast, we mean that 
the active regions of the field are clearly 
distinguished from the inactive regions. 
 
Orientation-preference is important because the 
purpose of the fields are to match the 
orientations of lines evident in small samples of 
larger images, so that an accurate encoding of 
the image may be formed.  Sparsity is important 
for the same reason, because if the fields all 
represent similar angles, the encoding of an 
unmatched angle would be inaccurate.  Contrast 
is not so important for actual implementation of 

the feature maps because internal mechanisms 
could easily increase the “contrast” in a 
biological system, but rather it is important 
because high contrast may increase the 
confidence in the results of a map configuration. 
 
We found that training with smaller receptive 
fields provided much faster distribution and 
convergence of the field maps, because the 
random receptive field initializations had less 
deviation from the lines of orientation 
selectivity.  For instance, if the receptive fields 
were 2x2, many random combinations would 
already be in the form of oriented “lines”, but 
with dimensions of 10x10, the probability of the 
random points naturally aligning into shapes 
similar to the visual field is much smaller.   
 
The effect of the randomness was to make the 
entire set of fields so dissimilar from the visual 
field samples as to cause the first morphed field 
to be continuously the best choice until damping 
of stimulation due to age reduces the stimulation 
below the level of the noise patterns with 
heightened stimulation.  To overcome this 



problem in our tests, we introduced a higher 
factor on the first exponential, which gave very 
high initial stimulation for nascent fields.  
Perhaps a better solution for the future would be 
to attempt to simulate initial formations due to 
retinal or PGO waves. 
 
We found that training with our sensory-
invariant driving function, using 4-6 receptive 
fields with 11x11 dimensions, the receptive 
field maps would all converge to a fairly stable 
state after about 300 movement iterations (See 
Fig. 8).  Generally, the resultant feature maps 
would have very good orientation selectivity, 
high contrast, and high sparsity.  One interesting 
thing to note, however, is that frequently there 
will be one field which does not exhibit any 
orientation preference, and instead takes on the 
form of a vague circular or random noise 
feature.  Even with increased iterations this 
feature map was not observed to develop to the 
same level as the other fields.  This presence of 
this field indicates an insufficient number of 
receptive fields to accurately represent all the 
features of the image, and it is a combination of 
all the other commonly sampled features.   
 
After removing the sensory-invariant driver and 
using random image sampling for each training 
iteration, the resulting feature maps after an 
extremely high number of iterations resemble 
features from the image, but these features are 
often not oriented lines as desired (see Fig. 7).  
Additionally, removing the sensory-invariant 
driver greatly increases the convergence time.  
For example, it took nearly the full 2000 
iterations to form the vague features in Fig. 7, 
whereas fields exhibiting much greater contrast, 
sparsity, and orientation-selectivity are 
developed after only several hundred iterations 
when the driver function is used (Fig. 10). 
 
Perhaps the most attractive advantage to using 
the sensory-invariant driver approach is that it 
allows correlations between movement and 
action to be made, which can be used to learn 

the orientations of receptive feature maps as 
they are forming. 
 
Since receptive fields are mutable, the brain 
must learn which orientations are represented by 
specific fields after the fields have developed.  
In order to test only the method of perceiving 
orientation-selectivity of field maps, we started 
with artificially well-formed receptive fields 
(see Fig. 11).  Although we tested these two 
properties separately, they would both be in 
effect at the same time. 
 
To test the theory behind the method of 
correlating invariance with movement, we first 
used grid-patterns as visual fields because when 
the focus is on any grid line, movement parallel 
to that line should stimulate the same neuron 
repeatedly.  Using a simple square-grid (Fig. 
6b), the results were fairly accurate after about 
1000 movement iterations.  However, the 
estimates for the angles not represented in the 
field (45 and 135) were not as accurate as the 
angles that were represented (0 and 90). 
 
Using a more complicated grid as the visual 
field that contains lines oriented at 45 and 135 
degree angles in addition to 0 and 90 degree 
angles (Fig. 6a), the results were not visibly 
improved.  This is likely to be due to the 
intersections of lines, where high sensory-
invariance is maintained by moving in any 
direction.  Also, the graphs indicate the path-
sensitivity of the results, because while Fig. 13 
and Fig. 14 were run under the same conditions, 
Fig. 13 happened to produce better results 
simply because of the path (sequence of actions) 
that was taken. 
 
Finally, we tested on a natural image (Fig. 5)*.  
Although the relative order of the orientations 

                                                 
* The convoluted image shown in Fig. 5b is not exactly 
what was used here, because unlike the previous 
experiment where black represented areas of 
unimportance, gray represents unimportance in this 



was learned properly for the majority of the 
time, this was eventually unlearned after 
significant iterations, and the estimated values 
are all significantly high.   
 
While the results shown here are not conclusive 
enough to show that action and sensory-
invariance are critically important, they do 
suggest the possibility. 
 
Perhaps by attempting to apply the principles of 
reinforcement learning, action, and sensory-
invariance to an even more biologically accurate 
model, more robust methods may emerge.  In 
our research we represented receptive fields as 
image maps, where the intensity of each pixel 
represented the results of thousands or millions 
of dendritic connections and weights all the way 
from the retina into V1.  While these weights 
are indeed mutable, it may be that the way in 
which they mutate make possible different kinds 
of algorithms for formation of receptive fields in 
V1 neurons. 
 
For instance, intermediate cells in V1 may form 
even more primitive receptive field shapes that 
are used in the learning and composition of 
orientation-selective receptive fields.  Then, 
changing individual synaptic weights could 
result in changing the activation levels of 
patterns and features within a neuron’s receptive 
field, rather than controlling the intensity of 
individual pixel points in the field.  This kind of 
field could help to explain the apparent presence 
of Gabor-like patterns in orientation-selective 
receptive fields, and could be stored and adapted 
using multilayer neural networks. 
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