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Abstract This paper addresses the general problem of robust parametric model estimation from data that has both an unknown

(and possibly majority) fraction of outliers as well as an unknown scale of measurement noise. We focus on computer vision

applications from image correspondences, such as camera resectioning, estimation of the fundamental matrix or relative pose for

3D reconstruction, and estimation of 2D homographies for image registration and motion segmentation, although there are many

other applications. In practice, these methods typically rely on predefined inlier thresholds because automatic scale detection is

usually too unreliable or too slow. We propose a new method for robust estimation with automatic scale detection that is faster,

more precise and more robust than previous alternatives, and show that it can be practically applied to these problems.
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1 Introduction

Data fitting (i.e., estimating the parameters of some hypothet-

ical model that best explains a set of data measurements) is

a critical task that arises in many disciplines. In general, the

measurement set will contain some unknown fraction of outliers,

and the good measurements will be subject to some unknown

scale of noise, typically assumed to be Gaussian.

Least squares (LS) estimators, which minimize the sum of

squared residual errors, are efficient and optimal for Gaussian

noise (Huber, 1972), but are highly sensitive to outliers (Wang

and Suter, 2004a). The breakdown point of the LS estimator

is 0% because the estimate may be arbitrarily skewed when

the percentage of outliers is greater than 0% (Rousseeuw, 1987,

p.9). A more robust approach is the least median of squares

(LMS) estimator (Rousseeuw, 1984), which minimizes the me-

dian of squared residuals, and has a breakdown point of 50%.

Accumulator based methods (e.g., the Hough transform

(Hough, 1962; Duda and Hart, 1972) or variations such as the

Randomized Hough Transform (RHT) (Xu et al., 1990)) have

no specific breakdown point, and are popular for simple line and

curve detection. However, they are non-optimal, and are limited

in their general applicability because they require discretization

of a p-dimensional space for models with p parameters, which

would result in prohibitively high time and space complexity

for many problems.

Perhaps the most well-known and generally applicable ro-

bust estimator without a breakdown point is RANdom SAmple

Consensus (RANSAC) (Fischler and Bolles, 1981). RANSAC

uses a hypothesize-and-test framework by randomly sampling

subsets of the measurement set, and retaining the model that

maximizes the number of inliers according to some threshold.

Because it does not require discretization of the search space,

estimation of high-dimensional models is computationally fea-

sible, and there is no breakdown point beyond the minimal

fraction necessary to define a model.

Due to its success, there have been many RANSAC varia-

tions. To summarize, robust M-estimators (Huber, 1981) were

used for model evaluation with MSAC and MLESAC (Torr and

Zisserman, 2000), the inner optimization from LO-RANSAC

(Chum et al., 2003) attempts to compensate for the unlreais-

tic assumption that all models estimated from uncontaminated

(albeit noisy) data are good, and explicit testing for degenerate

configurations has been incorporated in DEGENSAC (Chum

et al., 2005) and QDEGSAC (Frahm and Pollefeys, 2006).

Other improvements have focused on performance optimiza-

tions by using heuristic bail-out tests (Matas and Chum, 2004;

Capel, 2005; Chum and Matas, 2008) or guided sampling as

in PROSAC (Chum and Matas, 2005), Preemptive RANSAC

(Nister, 2003), and ARSSAC (Raguram et al., 2008). See Ragu-

ram et al. (2008) for a more thorough survey.

All of these aforementioned RANSAC variations implicitly

require accurate a priori knowledge of the scale of inlier noise

in order to choose the threshold. In many cases, it is possible to

choose a reasonable threshold based on domain knowledge, but

the sensitivity to this choice is undesirable and can sometimes

result in instability. Indeed, it has been often noted that given a

bad choice of threshold, RANSAC will completely break down

(Wang and Suter, 2004a,b).
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One of the first approaches attempting to overcome this lim-

itation was to first make a robust estimate of the model using

LMS and then make a robust estimate of scale using the me-

dian squared residual (Rousseeuw, 1987), as proposed in Torr

and Murray (1997). However, because LMS and the median

scale estimate both have 50% breakdown points, this method

cannot be applied to data sets with more than 50% outliers, as

is often the case.

More recent RANSAC variations have attempted to incor-

porate scale estimation with model estimation. For example,

ASSC (Wang and Suter, 2004a) modified the RANSAC objec-

tive by maximizing the inlier count divided by a robust estimate

of scale. However, there is no statistical support for this mod-

ified objective, and it does not always detect the correct scale.

ASSC also retains adaptive sampling from RANSAC, but not

in a statistically valid way, and this can lead to premature con-

vergence at grossly over-estimated scales when the outlier ratio

is high. A similar approach was taken in Fan and Pylvänäinen

(2008), who suggest modifying the objective function to seek

the model which minimizes their proposed weighted median

absolute deviation (WMAD) estimate of scale.

Projection-based M-estimators (pbM-estimators) were used

in the ‘projection pursuit’ approach of Chen and Meer (2003),

and some performance enhancements were proposed in Rozen-

feld and Shimshoni (2005); Subbarao and Meer (2005, 2006).

The most recent and best-performing technique along these

lines is ASKC (Wang et al., 2010).

ASKC is an improvement upon the original ASSC algo-

rithm, with a more statistically motivated objective function.

The basic idea is to choose the random model hypothesis that

maximizes a kernel density estimate in residual space centered

at the origin. ASKC also abandons the earlier attempt at adap-

tive sampling from ASSC, and instead uses a fixed number of

samples. The recognition that adaptive sampling does not work

in this context is a significant limitation in comparison to the

original RANSAC algorithm, because using a fixed number of

samples either prevents good performance in the presence of

high inlier ratios (excessive sampling), or induces a breakdown

point in the presence of low inlier ratios due to not enough

sampling to find the structure within the data.

A subtle theoretical problem with ASKC is that the method

was derived based on the assumption that the residual distri-

bution should be normal and hence have a mode at the origin,

but in their experiments is often applied to the distribution

of squared fitting errors which has, in general, a scaled χ2k-

distribution with a non-central mode that depends on σ for

k > 2 (Section 3).

Ultimately, the greatest limitation of both ASSC and ASKC

is that they attempt to estimate the scale directly from the fully

contaminated set of residuals, which is an inherently difficult

problem to solve under high outlier ratios. The proposed Two-

Step Scale Estimator (TSSE) from Wang and Suter (2004a),

which is used by both methods, relies on a kernel density es-

timate (KDE) of the residual error distribution and is capable

of functioning under high outlier ratios, but only if the kernel

bandwidth is chosen properly. Automatic methods for choosing

the bandwidth rely on an accurate estimate of scale. Thus, it is

somewhat of a ‘chicken-and-egg’ problem.

Wang et al. (2010) propose obtaining the initial estimate us-

ing the k-th order statistic, which we find sometimes works and

sometimes does not. Outlier contamination can lead to over-

estimated bandwidth, in turn leading to oversmoothing of the

KDE, and finally poor scale estimation with TSSE. To counter-

act this oversmoothing they propose using a fraction ch ∈ (0, 1)

of the automatically derived bandwidth, but we find that there

is no ‘one size fits all’ value of this parameter, because it de-

pends largely on the scale and distribution of outliers. In sum-

mary, the overall sensitivity of ASKC to the scale estimator

leaves us unsatisfied.

Another recent approach to automatic scale estimation is

based on the recognition that RANSAC tends to exhibit the

greatest consistency in the discovered models when the thresh-

old is set near the true scale level. This observation was first ex-

ploited in StaRSaC (Choi and Medioni, 2009), which performs a

brute force search across a wide range of logarithmically spaced

scales, repeating RANSAC at least 30 times at each level, in or-

der to identify the scale at which the Variance of the estimated

model Parameters (VoP) is minimized.

A notable disadvantage of this approach is high computa-

tional cost: even with a modest granularity of 100 scales, this

would require running RANSAC about 3000 times. One must

also consider that running RANSAC with too small a scale im-

poses a near-zero inlier ratio, which requires an exponentially

larger number of samples for the adaptive convergence crite-

rion. This problem can be partially avoided by using an arti-

ficial limit on the number of iterations, although such a limit

might prevent the true structure from being found if the outlier

ratio is high.

Another more subtle problem is a dependence on model pa-

rameterization, because the algorithm assumes that the VoP

is indicative of ‘structural variation’ of the model. Variance is

completely meaningless for over-parameterized models (such as

homogeneous entities), and even after projecting into a minimal

parameterization (e.g., by performing a homogeneous division),

variance is still not an accurate reflection of structural varia-

tion. For example, if one projects the homogeneous equation

of a line into the familiar form of y = mx + b, one is likely to

observe extremely high variance in the b parameter for near-

vertical lines, which is much greater than the variance would

be for a set of nearly horizontal lines of equal angular varia-

tion. Thus, in order to obtain good results for any particular

problem, one may need to spend a great deal of effort into find-

ing a parameterization in which the VoP corresponds well to

structural model variation. This alone makes it unsuitable as a

generic estimation routine.

A related problem is that the algorithm requires comparing

models to find the largest-scale model that is ‘consistent’ with

the model at the scale that minimizes the VoP. In their imple-

mentation, model consistency is assessed by using the Frobenius

norm of model parameters with some unspecified threshold,

but the Frobenius norm of model parameters is generally not

an accurate measure of ‘structural difference’ between models.

Furthermore, choosing this threshold automatically is implic-

itly related to the noise level, and is arguably no simpler than

choosing the original RANSAC threshold.

Lastly, the scale cannot be estimated more finely than the

search discretization, and while it is generally true that the low-
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est variance occurs around the true scale, this is not always the

case. For example, if one is fitting lines to point data in R2,

and there are two large outliers outside of a data set, then any

threshold large enough to connect these two outliers will con-

sistently result in the bad line connecting those outliers. Also,

whenever there is a low outlier ratio, the scale encompassing all

data points will be preferred over the true scale.

A more recent approach in the same spirit as StaRSaC is

RECON (Raguram and Frahm, 2011), which also attempts to

determine scale based on the recognition that model variance

is low around around the true scale, but with one major dif-

ference: rather than explicitly looking for low variance in the

model parameters, RECON looks for models with low variance

in the sort-order of residuals (or fitting errors).

RECON forms model hypothesis from randomly selected

minimal subsets until K ≥ 3 models with mutually α-consistent

residual sets have been found. The α-consistency test searches

for the smallest n-value such that the data points associated

with the n smallest residuals have more than α2 percent over-

lap, with α = 0.95. It is assumed that this n-value represents

the separation between inliers and outliers. Although this test

is statistically inspired, there are a number of practically occur-

ring situations in which it fails.

First, it rests heavily on the implicit assumption that the

fitting errors for inliers between any two good models will occur

in random order. However, if one compares two identical mod-

els, then the fitting errors must have the exact same sort-order,

and thus α-consistency would pass at any value, such as the

minimal value of n = 1, meaning that none of the inliers are

detected.

In the presence of noise, it is unlikely to find two identical

models, but the sort-order can still be expected to be similar

for similar models. This is mostly a problem in the fourth step

of RECON, which calls for making M = 30 over-determined

model estimates from outlier free data, and than taking the

minimal n-value that passes the α-consistency test between all

pairs. Because these estimates are over-determined and outlier

free, it should be expected that some of these models are very

accurate and hence very similar, and hence it would not be sur-

prising if there were some pair of models with a very similar sort

order, leading to a greatly under-estimated n-value. Because

RECON then re-estimates the final model from this minimal

number of points, it would destroy the model estimate.

Another problem is that, for very small values of n, the

α-consistency test can easily pass for inconsistent models by

pure chance. For example, consider a line fitting problem with

two perpendicular intersecting line models that both have the

smallest fitting error to the same point nearby their intersec-

tion. In this case, the normalized overlap θi,j1 = 1, and thus

the two models will be deemed as α-consistent, despite that

these models are not at all consistent in their support regions.

Although the individual probability of this for a single trial is

low, given a sufficiently large number of α-consistency trials,

the probability of this problem occurring at least once becomes

very large.

This problem can occur for arbitrarily large n values, and

may be exacerbated by the distribution of data points, because

the only condition is that two inconsistent models happen to

share some of their lowest residuals in common order (e.g., the

models ‘pivot’ around a similar point in the data). Thus, if the

data distribution inherently supports a region of common points

that are likely to be shared by many different models (such as

a bow-tie distribution for line fitting), then the same problem

may be common for larger values of n. In the case of F-matrix

estimation, a large number of points on a common plane could

create this problem, even if the data also contains a significant

number of off-plane points as well.

The runtime performance of RECON can be prohibitive,

because for each RECON hypothesis, one must test for α-

consistency with all prior RECON hypothesis – and each test

for consistency requires a brute force search through the residu-

als at all possible scales. Thus, despite that the overall number

of samples is low, this high time complexity coupled with the

large number of consistency checks required to find a set of mu-

tually consistent models can quickly result in excessive runtime

for low outlier ratios.

RECON also has difficulty with data sets that may contain

multiple structures, because it returns the first significant struc-

ture that is found, which is not necessarily the most dominant

structure in the data.

In the context of multiple model fitting, a number of meth-

ods have been proposed that also incorporate automatic scale

selection (Toldo and Fusiello, 2009; Chin et al., 2009; Wang

et al., 2012). However, Wang et al. (2012) have already devel-

oped ASSC and ASKC which are optimized for single-model

estimation, Chin et al. (2009) effectively generalizes the prin-

ciple used by RECON to the multiple model fitting problem,

and the method of Toldo and Fusiello (2009) does not work for

single-model estimation problems. Thus, we will not consider

these more complex and computationally intensive multiple-

model fitting methods further.

To summarize, it is hard to justify the greatly increased

computational cost or reduction in reliability that is associated

with using any of the aforementioned RANSAC variations that

incorporate automatic scale selection, especially for computer

vision problems, where the errors are generally measured in im-

age space, and one can often assume a sub-optimal threshold

that works ‘acceptably well’ based on the assumption that im-

age correspondence error is on the order of a pixel or two, as is

done with current state of the art Structure from Motion (SfM)

systems like Bundler (Snavely et al., 2006, 2008).

This is not always the case, as one might be using a sub-

pixel matching algorithm for low-baseline pairs leading to sub-

pixel errors, or one might be performing wide-baseline matching

with multi-scale features that have significantly larger errors, or

tracking points across multiple frames resulting in the accumu-

lation of errors, or dealing with images of varying sizes and

qualities leading to unpredictable error levels. Thus, automatic

scale estimation is still preferable, if it could be done reliably

and efficiently.

Our recognition is that it is usually not difficult to specify a

conservative maximum scale, and doing so permits the develop-

ment of a new approach to the scale estimation problem without

the large sacrifices in efficiency or reliability that are associated

with completely unbiased searching through scale space. This is

the motivation behind the proposed Simultaneous Fitting and

Scale Estimation (SIMFIT) algorithm.
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Like the original RANSAC algorithm, SIMFIT is simple to

implement, is applicable to arbitrarily-high dimensional data,

has no specific breakdown point, is independent of model pa-

rameterization, and uses the same statistical convergence cri-

terion to adapt the number of iterations. It does not require

any additional parameters, and does not significantly increase

computational cost or reduce reliability. Furthermore, SIMFIT

is designed to be fully general, and not just limited to computer

vision problems.

We begin by introducing the theoretical background for

classifying inliers (Section 2) and estimating scale from the

residuals or fitting errors (Section 3). We then introduce the

SIMFIT algorithm (Section 4), clarify the parameters of algo-

rithms compared (Section 5) and present our experimental re-

sults (Section 6), starting with a validation of the assumed noise

distribution (Section 6.1), followed by an empirical compari-

son of accuracy and performance on line fitting and homogra-

phy estimation (Section 6.2) and finally a real-data experiment

with fundamental matrix estimation (Section 6.3). Our results

show that SIMFIT produces a model estimate with greater like-

lihood, more accurately estimated scale, and lower computa-

tional cost.

2 Classifying Inliers

For some implicit p-dimensional model defined by parameters

θ ∈ Rp, let the function f(x|θ) : Rn → Rr be a mapping from

data measurements to residual errors, where n is the dimen-

sion of the measurement space and r is the number of resid-

ual errors per datum. Thus, for a set of N data measurements

xi ∈ Rn, i = 1 . . . N , the function f(xi|θ) = di maps the ith

datum to di, a vector of residual errors associated with the da-

tum. We call ||di||2 the squared fitting error of xi with respect

to the model θ, which is equal to zero only when xi is perfectly

consistent with θ.

When fitting an m-dimensional surface in an n-dimensional

space there are k = n−m degrees of freedom in defining a sur-

face normal, called the codimension (Kanatani, 1996). If mea-

surement noise is independent and normally distributed with

standard deviation σ, and given a reasonable model estimate

θ̂ ≈ θ, then residual errors in the codimension will be dis-

tributed approximately the same as measurement errors (nor-

mally). Thus, squared fitting errors will be distributed accord-

ing to a scaled χ2-distribution with k degrees of freedom (Dyer,

1973).

Once the scale σ is known, a threshold may be calculated as

τ2 = σ2F−1k (α) (Hartley and Zisserman, 2004, p.119), where

α is the desired percentile (e.g., α = 0.95) and F−1k is the

standard inverse cumulative χ2k-distribution function. Given an

estimated model θ̂ and threshold τ , a datum may then be clas-

sified as an inlier when the squared fitting error is below the

threshold; that is, ||di||2 < τ2.

3 Robust Scale Estimators

Given an existing model estimate θ̂, a robust scale estimator at-

tempts to estimate the true scale of measurement noise from the

distribution of residuals or fitting errors relative to the model

estimate. The maximum likelihood (ML) estimate of σ is sim-

ply given by the sample standard deviation from the combined

set of residuals. In the special case where the number of χ2 de-

grees of freedom is equal to the number of residuals per datum

(r = k), this can be written in terms of the fitting errors as

σ̂ML =

√√√√ 1

Nk

Nk∑
j=1

r2j =

√√√√ 1

Nk

N∑
i=1

||di||2, (1)

where rj is the jth residual out of the combined set. However,

it is well known that the ML estimate is not robust to outliers,

and we expect that the data does contain outliers. A robust al-

ternative comes from the median squared residual (Rousseeuw,

1987; Torr and Murray, 1997). Assuming that residual errors

are distributed as R ∼ N (0, σ2), we have

0.5 = P (R2 < medR2) = P (|R| < med |R|) (2)

= P (|Z| < (med |R|)/σ), (3)

where Z = R/σ is a standard normal random variable (RV).

Because the distribution of Z is symmetric, the above is equiv-

alent to

0.75 = P (Z < (med |R|)/σ), (4)

which implies

Φ−1(0.75) = (med |R|)/σ (5)

σ =
√

med |R|/Φ−1(0.75), (6)

where Φ is the cumulative distribution function of the stan-

dard normal distribution. Therefore, a robust and asymptoti-

cally consistent estimator for σ from the residuals is given by

σ̂MED =
medj |rj |
Φ−1(0.75)

=

√
medj r

2
j

Φ−1(0.75)
. (7)

In practice, when k > 1, one does not always have a residual

vector, and it is tempting to use (7) to estimate σ from the fit-

ting errors instead; however, this would be incorrect because the

squared fitting errors have a non-central χ2 distribution. The

median absolute deviation (MAD) is often used to compensate

for this non-centrality, but this is not an asymptotically consis-

tent estimator.

The correct estimator can be derived in the same fashion

as (7). Specifically, if D ∼ X 2(σ, k), then from the definition

of the median we have

0.5 = P (D < medD), (8)

which implies

0.5 = Fk(medD|σ) (9)

medD = σ2F−1k (0.5) (10)

σ =

√
(medD)/F−1k (0.5). (11)
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Thus, a robust and asymptotically consistent estimator for

σ, analogous to (7) but computed from the fitting errors and

hence valid for all cases, is given by

σ̂′MED =

√
medi ||di||2

F−1k (0.5)
. (12)

It should be noted that these median based estimators have

50% breakdown points, which is ineffective for most previous

scale estimation algorithms where the breakdown point of the

scale estimator induces an equivalent breakdown point in the

overall estimation routine (Wang and Suter, 2004a; Fan and

Pylvänäinen, 2008; Wang et al., 2010; Raguram and Frahm,

2011).

This has led to the development of scale estimators with

increased tolerance to outliers, such as the Compressed His-

togram (CH) (Yu et al., 1994), the k-th order statistic (Lee

et al., 1998; Bab-Hadiashar and Suter, 1999), the weighted me-

dian absolute deviation (WMAD) (Fan and Pylvänäinen, 2008),

Two-Step Scale Estimator (TSSE) (Wang and Suter, 2004a),

IKOSE (Wang et al., 2012) and others.

However, the breakdown point of the scale estimator is not

a significant concern for SIMFIT, becuase the scale estimate

is only used to obtain an over-estimate anyway. Thus, we will

prefer σ̂′MED for its simplicity and reliability.

4 Simultaneous Fitting and Scale Estimation

(SIMFIT)

The sensitivity to threshold choice τ in RANSAC is revealed

by the fact that, as τ → ∞, all constraints on the estimated

model vanish, giving a purely random result. In contrast, we no-

tice that MSAC (Torr and Zisserman, 2000), a modification of

RANSAC that minimizes a robust M-estimator (Huber, 1981),

becomes equivalent to the method of least absolute deviations

(LAD) (Branham, 1982) as τ →∞.

LAD is already a fairly robust method, and by using any

τ <∞, one may obtain far more robust results without a spe-

cific breakdown point. Thus, MSAC is quite robust to over-

estimated scales, and this is the core concept we exploit in the

algorithm outline below:

1. Starting from any initial overestimate of σ, the correspond-

ing optimal threshold τ may be derived, and used to esti-

mate a model with associated inliers using MSAC.

2. From the residuals of the inlier set, a robust estimate of σ

may be computed using σ̂′MED. Because it was estimated

from a more restricted set of inliers, the newly estimated σ

will usually be less than the previous.

3. If there is no significant change in the estimate of σ, then all

the outliers must have been removed, and hence the model,

inliers, and scale should all be accurate. Otherwise, one may

repeat MSAC from step 1 using the newly reduced estimate

of σ.

To clarify the algorithm details, we give pseudo-code in Al-

gorithm 1, and proceed here with some analysis. First, the ini-

tial estimate of σ is used to calculate a corresponding over-

estimate of τ (line 2), and all the data points are added to the

potential inlier set (line 5).

Algorithm 1 SIMFIT

Require: data is a set of measurements, σMAX > σ is an over-
estimate of the true inlier noise, ε ≥ 0 is the minimum error
tolerance desired in the scale estimate, α ∈ (0, 1) is the desired
percentage of inliers to capture with a threshold on fitting error
(e.g., 0.99).

Ensure: (θ̂, σ̂, inliers) is the final estimated model, with corre-
sponding estimate of the noise scale and inlier set.

1: σ̂ ← σMAX

2: τ2 ← σ̂2F−1
k (α)

3: hashStates← {}
4: inliers← {}
5: for i = 1 to #data do
6: Add i to inliers
7: end for
8: repeat
9: θ̂ ←MSAC(data, inliers, τ)

10: for all i ∈ inliers do
11: if ||di||2 > τ2 then
12: Remove i from inliers
13: end if
14: end for
15: σ̂prev ← σ̂
16: σ̂ ← σ̂′MED(inliers)

17: τ2 ← σ̂2F−1
k (α)

18: h←hash(inliers, σ̂)
19: if hashStates contains h then
20: cycleDetected← true
21: else
22: Add h to hashStates
23: end if
24: until |σ̂ − σ̂prev | ≤ ε or cycleDetected
25: repeat
26: Improve estimate of θ̂ from all inliers
27: modified← false
28: for all xi ∈ data, i /∈ inliers do
29: if ||di||2 < τ2 then
30: Add i to inliers
31: modified← true
32: end if
33: end for
34: until modified = false
35: σ̂ ← σ̂′MED(newInliers)

On each iteration, MSAC is used to compute a robust es-

timate of the model θ (line 9) from within the potential inlier

set (our modified version of MSAC that works with a shrinking

inlier set is given in Algorithm 2). The set of inliers is reduced

(line 10) and used to compute a new robust estimate of scale

(line 16) and associated threshold (line 17).

In general, each new estimate of scale will be lower than

the previous until convergence. However, this is not guaran-

teed, and in some very rare cases a cycle might be entered.

Therefore, we perform explicit cycle prevention by computing

the MurmurHash of the inlier indices and current scale esti-

mate (rounded to nearest integer), and break out of the loop if

a repeated state would be entered (line 24).

Normally, convergence is detected when the reduction in

σ becomes insignificant, as detected by a difference less than

some threshold ε (line 24). However, we note that one may ig-

nore this parameter by setting ε = 0 here, which merely delays

convergence until no further improvement is possible.

Additionally, one may add some optional convergence cri-

teria to improve best and worst case performance: (a) If the
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found solution uses nearly all of the potential inliers (i.e., if the

number of inliers reduced from the current iteration is an in-

significant fraction); (b) If the found solution uses such a small

number of inliers that further reduction of the inlier set would

be pointless (i.e., the size of the current inlier set is less than

2 times the minimal number of points necessary to define a

model).

Algorithm 2 MSAC, modified for shrinking inlier set

Require: data is a set of measurements, inliers is a set of data
indices that are not known to be outliers, τ > 0 is the inlier
threshold, pFail ∈ (0, 1) is the accepted probability of failure
(e.g., 1× 10−4), and pickSize is the number of measurements to
use in each random selection (determined by model estimator).

Ensure: The model θ̂ has been estimated from only inliers with
probability 1− pFail.

1: minCost←∞
2: iters← 0
3: repeat
4: pickSet← Select pickSize unique indices from inliers
5: Estimate θ̂test from pickSet
6: cost← 0
7: count← 0
8: for all i ∈ inliers do
9: Compute ||di|| using θ̂

10: if ||di|| < τ then
11: cost← cost+ ||di||
12: count← count+ 1
13: else
14: cost← cost+ τ
15: end if
16: end for
17: if cost < minCost then
18: minCost← cost
19: θ̂ ← θ̂test
20: needIters← log(pFail)/ log

(
1− (count/#inliers)pickSize

)
21: end if
22: iters← iters+ 1
23: until iters ≥ needIters

In most cases, we do not expect to need more than 1-3 it-

erations of MSAC to converge to the correct scale. Moreover,

because MSAC is run within a reduced inlier set (similar to

LO-RANSAC (Chum et al., 2003)), subsequent runs of MSAC

become computationally trivial, as the inlier ratio will be near

to 1, requiring only a few random samples to meet the statistical

convergence criterion of Fischler and Bolles (1981).

After convergence to the proper scale, we transition into a

final (optional) model refinement stage (line 25), which we refer

to as the model-shift procedure, because it is actually a general-

ization of the well-known mean-shift procedure (Comaniciu and

Meer, 2002), where the threshold is effectively the mean-shift

bandwidth with a uniform kernel, and we generalize the sam-

ple mean from mean-shift with the over-determined estimate of

the model. The only actual difference from mean-shift is that

we only allow inliers to be added (and not removed) from the

potential inlier set, which guarantees convergence by preventing

cycles.

SIMFIT is usually quite robust to the choice of σMAX . For

example, if one chooses σMAX = ∞, then the first iteration

would reduce σMAX down to σ̂′MED from an all-data fit. This

is often sufficient to converge to the proper scale, although when

the outlier points come from some distribution that also has fi-

nite variance, then the all-data fit may yield a stable model that

is a false attractor. Thus, one should choose σMAX < σ̂′MED

if possible.

5 Algorithms Compared

In this section we identify previous algorithms that we compare

to SIMFIT in our experimental results for their ability to do ro-

bust estimation with simultaneous scale detection. We also clar-

ify the choice of free parameters and algorithm details when nec-

essary. In general, we set τ so as to capture α = 0.99 percent of

inliers, and we let the number of samples for RANSAC/MSAC

be determined adaptively with pFail = 1× 10−3, and a maxi-

mum of 10000.

5.1 RANSAC

Although RANSAC does not include scale estimation, we use

RANSAC with an optimally derived threshold based on the

true σ for the purposes of performance comparison.

5.2 SIMFIT

Because we expect image noise on the order of a pixel or so,

we use a conservative over-estimate of σMAX = 15. We use

the same value in synthetic tests. We use three conditions for

early-termination of the main loop: (a) change in σ less than

ε = 0.5, (b) reduction in the inlier set is less than 1% from the

previous iteration, (c) size of the inlier set is reduced to less

than 2 times the minimal number of points to define a model.

5.3 LMS+MSAC

The first comparative algorithm is the procedure of Torr and

Murray (1997), where LMS is used to obtain an initial estimate

of the model, followed by robust scale estimation using σ̂MED,

and finally RANSAC with a threshold based on σ̂MED. We

have upgraded this method by replacing RANSAC with MSAC

from Torr and Zisserman (2000) because it is strictly superior to

RANSAC in this context. LMS is implemented (as per usual) by

random sampling, and the number of iterations is determined

based upon the assumption that the data may contain up to

50% outliers (because this is the breakdown point of LMS).

5.4 ASSC and ASKC

The second algorithm that merits comparison is ASSC (Wang

and Suter, 2004a), which modifies the RANSAC criterion to

maximize the number of inliers divided by a robust scale esti-

mate, as well as the newly developed ASKC (Wang et al., 2010).

ASSC uses adaptive sampling, but ASKC uses a fixed number

of samples, and we chose M = 1000 samples.

Both ASSC and ASKC estimate scale using TSSE, which

uses a kernel density estimate (KDE) of the residual error,
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where the bandwidth for the KDE is chosen automatically us-

ing a rule of thumb multiplied based on an initial scale esti-

mate, and then multipled by an unspecified tuning parameter

ch ∈ (0, 1) to compensate for oversmoothing.

For the initial scale estimate, we use the k-th order static

with k = 0.2, as described in Wang et al. (2010). We use the

default value of ch = 1 because we are testing generic perfor-

mance and do not permit tuning the algorithms for particular

noise distributions.

5.5 RANSAC EIS M

Several comparable algorithms were proposed in Fan and

Pylvänäinen (2008): RANSAC-MAD was essentially the same

as ASSC but used the median absolute deviation (MAD) to

estimate scale instead of TSSC, RANSAC-EIS modified the

objective by calculating a weight vector using Ensemble Inlier

Sets (EIS) and then using WMAD instead of MAD, and finally

RANSAC-EIS-Metropolis incorporated weighted sampling. The

latter was found to be the superior version, so we only com-

pare against this one. We note that their algorithm calls for

some number of unspecified fixed iterations, so we use the same

probabilistic argument from RANSAC and LMS to calculate

the number of required iterations assuming there are 50% out-

liers.

5.6 STARSAC

STARSAC requires a minimum and maximum scale, we used

σMIN = 1 × 10−5 and σMAX = 1000, and tested at 20 scales

logarithmically spaced within this range, performing the rec-

ommended 30 runs of RANSAC at each scale. Due to the

large number of RANSAC iterations, and because the required

number of RANSAC samples grows exponentially for under-

estimated scales, we found it computationally necessary to im-

pose a maximum of 100 samples for each run of RANSAC.

When dealing with homogeneous models, the set of model

parameters was taken as the set of real parameters after per-

forming homogeneous division. Two models were deemed ‘con-

sistent’ if the maximum relative difference between model pa-

rameters was less than 0.2.

5.7 RECON

The version of RECON that we use has a few improvements

over the algorithm described in Raguram and Frahm (2011).

First, we clarify that the termination condition of finding ‘K

mutually α-consistent models’ requires clustering models into

mutually α-consistent groups. These clusters are efficiently

maintained using the union-find structure.

Because the initial α-consistency test will always pass for

inconsistent models at some large scale encompassing all (or

most of) data, RECON explicitly tests for σ̂MED < σMAX ,

or alternatively tests the KS-test for distribution equality. We

opted to use the scale-based test in our experiments because it

is faster, more comparable to SIMFIT, and because the KS-test

will often accept the null-hypothesis of distribution equality for

an all-data fit when the outlier distribution has finite variance,

inducing a breakdown point as a set of α-consistent models are

more likely to be found at maximum scale for low outlier ratios.

However, when the outlier ratio is less than 50%, the ro-

bustness of the σ̂MED estimator may cause a low value of

σ to be estimated even when n is large enough to be an all-

data fit. This issue is corrected by instead testing against the

sigma implied by the residual error of the nth residual. That is,√
r2n/F

−1
k (0.5) < σMAX .

Another issue is the assumption that residuals will always

occur in random sort order. As discussed in the introduction,

this assumption is invalid for over-determined models, and can

lead to α-consistency check passing at an incorrect small n-

value. This can be problematic in the fourth step of the origi-

nal algorithm, which takes the minimum n value across all pairs

between the M over-determined models. This issue is corrected

by recomputing the scale from the final model using σ̂MED,

and then reclassifying inliers according to a threshold derived

from this final scale estimate.

We use σMAX = 15 in all experiments. Additionally, we

use K = 3 and α = 0.95 as recommended by the authors. The

authors recommend M = 30, but we found this to be compu-

tationally limiting, and reduced it to M = 5. To generate the

final non-minimal models, we always use a sample size equal to

twice the number of minimal points. Due to problems with the

α-consistency test for small n-values, we only consider n > 10.

6 Experimental Results

We begin with some experiments to validate that it is reason-

able to assume squared fitting errors will be χ2k-distributed

(Section 6.1). Then we compare the accuracy, reliability and

performance of SIMFIT against previous methods using a syn-

thetic line fitting problem as well as homography estimation

(Section 6.2), and finally on real data for fundamental matrix

estimation (Section 6.3).

6.1 Analysis of Correspondence Noise Distribution

A first assumption used by all algorithms is that the inlier noise

distribution is normal, which implies squared fitting errors of an

ideal model will be χ2k-distributed. However, to our knowledge,

this assumption has never been validated in practice. Moreover,

it is unclear how sensitive an algorithm would be to departures

in normality of the measurement noise. We explore both of these

issues here.

First, we consider robust estimation of a homography from

a set of sparse correspondences for image registration. Because

a homography perfectly describes the mapping of a planar sur-

face between any two arbitrary viewpoints, it is a good model

for registering aerial images where the ground surface is well-

approximated by a plane. Because each corresponding point

provides 2 constraints, we expect that squared fitting errors

will be χ2-distributed with k = 2 degrees of freedom.

We obtained two aerial photographs (Fig. 1, left and mid-

dle) taken from slightly different positions at different times
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(a) (b) (c)

Fig. 1. Example of a robust homography fit used to register two aerial photographs, courtesy of the Hagley Museum and Library (Hag,
1935a,b). Correspondences were found automatically by local patch similarity and then inliers identified using SIMFIT. (a) first image with
feature points, green points are inliers to the found homography; (b) second image with corresponding feature points, green points are inliers
to the found homography; (c) first image warped into the reference frame of the second image using the estimated homography.

of the day (as evidenced by the boats that have moved) and

then automatically computed a set of typical correspondences

by matching Harris feature points. These correspondences were

filtered by SIMFIT to determine a set of inliers (indicated by

the green points and lines in Fig. 1), along with the scale of in-

lier noise and an estimate of the homography, which was then

used to register the first image into the frame of the second

image for visual verification (Fig. 1, right).

There were a total of 244 potential correspondences found

by the feature matcher. We used an initial over-estimate of

σ = 15 pixels for SIMFIT. The first run of MSAC found 231

inliers and reduced the scale estimate to σ = 1.21 pixels. The

second run of MSAC found 189 inliers and further reduced the

scale estimate to 1.09 pixels. This resulted in convergence be-

cause our threshold is set at ε = 0.5, causing SIMFIT to transi-

tion into the nonlinear model-shifting mode where it increased

the potential inlier set to 199 correspondences and the final

threshold was τ2 = 3.31.

We computed the KDE of the distribution of residual er-

rors using the rule-of-thumb bandwidth (Silverman, 1986, p.48)

and compared it to the PDF of the normal distribution using

the found scale (Fig. 2, left), observing good visual agreement

(note that the KDE is a bit rough given that there are only

199 samples). We then computed the ECDF of the fitting er-

rors and compared them to a χ22 distribution at the appropriate

scale factor, and again observed good visual agreement (Fig. 2,

right). Thus, we conclude that the assumption of normality is

reasonable.

Of course, we do not expect that measurement errors will

always be normally distributed for all types of problems. There-

fore, we are curious to investigate how different noise distribu-

tions will effect the distribution of fitting errors. To this end,

we generated some synthetic data sets where the measurement

noise was uniformly distributed as well as distributed according

to an infinite variance stable distribution (Nolan, 2011).

The stable distribution arises as a generalization of the cen-

tral limit theorem: whereas the central limit theorem states that

the sum of any independent and identically distributed (IID)

random variable (RV) with finite variance converges to a nor-

mal distribution, the generalized central limit theorem (Nolan,

2011) states that the sum of any IID RV converges to a stable

distribution. Thus, the normal distribution, Cauchy distribu-

tion, Levy (or Pearson) distribution, Landau distribution and

Delta distribution can all be found as special cases of the sta-

ble distribution. Because of its theoretical generality, the stable

distribution is often suggested as a model for non-normal data.
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Fig. 2. Comparison between the empirical distribution and theoret-
ical expectation after fitting a homography to a set of real image
correspondences. Left: the kernel density estimate (KDE) of residual
errors using the rule-of-thumb bandwidth compared to the PDF of
a normal distribution. Right: the empirical cumulative distribution
function (ECDF) of squared fitting errors compared to the CDF of
a χ2-distribution.

When measurement noise is uniformly distributed, we see

that the distribution of squared fitting errors is still quite well-

approximated by the χ2 distribution (Fig. 3, left). In fact, even

when measurement errors are distributed according to a stable

distribution with S(α = 1.5, β = 0, γ = 5, δ = 0), which has

infinite variance, we still observed fairly good visual agreement

with the χ2 distribution (Fig. 3, right). This can be explained

by the fact that any tail effects of the stable distribution are

automatically chopped off and considered as outliers by the al-

gorithm.

The assumption that fitting errors will be χ2-distributed

is only relevant for picking an inlier threshold to capture the

desired percentage of inliers, but this is an insensitive parame-

ter that is just set with an arbitrary ballpark estimate anyway.
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Thus, although the estimated scale may be off, minor diver-

gences from the χ2-distribution are not otherwise relevant, and

hence one does not generally need to worry about departures

from normality in the residuals due to the correspondence de-

tector or approximated error metrics.
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Fig. 3. Comparison between the ECDF of squared fitting errors and
the predicted χ2-distribution in the robust estimation of a homogra-
phy from synthetic data that intentionally violates the assumptions
of normality. Left: using uniformly distributed inlier noise of (−5, 5)
pixels, the χ2

2 approximation still works well; Right: even when the
inlier noise comes from a stable distribution (α = 1.5, β = 0, γ = 5,
δ = 0), which has infinite variance, the χ2 approximation is still not
bad.

6.2 Experiments on Synthetic Data

Our experiments are designed to test all algorithms starting

from outlier-free data up to the point of failure under extreme

contamination from outliers and noise. The first test is 2D line

fitting. For each trial, outliers were uniformly distributed in a

500× 500 region, and the ‘true line‘ was chosen by joining two

random points from the outlier distribution. A random noise

scale was chosen σ ∈ (1, 10), and inliers were generated by

choosing a random t ∈ (0, 1) to interpolate between the two

endpoints of the line (where it intersects the bounding box of

the 500 × 500 region), and then adding normally distributed

noise with standard deviation σ to each coordinate.

Because a line is one-dimensional, the codimension of fitting

a line to n-dimensional points is k = n − 1. Thus, the squared

fitting error is distributed according to a χ2-distribution with

k = 1 degrees of freedom.

Our second test was estimation of a homography from 2D

correspondences. The true homography was chosen as a random

rotation matrix with θ ∈ (0, 2π), although we used a search

space of all 3 × 3 homographies. Inlier correspondences were

generated by choosing a random point in the 500× 500 region

for the first point, which was transformed by the true homog-

raphy and then normally distributed noise was added to each

coordinate of the second point.

For both tests, we vary the fraction of outliers from R =

0 . . . 0.9; for each R-level, we generate 100 random data sets

consisting of 1000 points each, and plot the median of several

performance statistics for each algorithm:

Found inliers This is the number of inliers found by the al-

gorithm; ideally, it should be roughly 1000(1− R) because

there are 1000 measurements.

Found scale This is the estimated scale divided by the true

scale, so the ideal value is 1. Note that each data set has a

random scale σ ∈ (1, 10).

Error This is an objective measure of the model error, calcu-

lated as the sum of squared fitting errors from all of the

true inliers divided by the sum of squared errors from the

true model. Thus, the ideal value is 1.

#Minimal fits This records the total number of random

models that were evaluated by the algorithm.

Runtime(sec) The total runtime of the algorithm in seconds

(tested on a Lenovo X220 laptop with Core i7-2620M pro-

cessor).

Some visual examples from the line fitting problem are

shown in Fig. 4, where the capacity of SIMFIT to routinely ex-

tract an accurate line from heavily contaminated data without

any prior knowledge of the scale of inlier noise can be observed.

We also show a proof of concept of how SIMFIT can be

used to extract multiple models with different noise scales from

the same data set (Fig. 4, c). This is done by repeatedly fit-

ting a model with SIMFIT to extract the most dominant struc-

ture, removing all the found inliers, and then running SIMFIT

again to extract the next most dominant structure in the re-

maining data, until the inlier count falls below some threshold.

It remains to be seen how this fit-and-remove method com-

pares with other dedicated multiple-model fitting algorithms

that perform scale selection (Toldo and Fusiello, 2009; Chin

et al., 2009; Wang et al., 2012).

6.2.1 Breakdown Point Analysis

The breakdown point can be identified as the highest outlier

ratio in which the algorithm succeeded in finding a reasonable

fit, rather than breaking down to an all-data fit. For line esti-

mation (Fig. 5, top left), LMS+MSAC has a breakdown point

at 50% (as predicted), ASSC had a breakdown point at about

70%, RANSAC EIS M had a breakdown point at about 60%.

The other algorithms did not break down, but at R = 0.9, RE-

CON and ASKC began to drastically over-estimate scale (Fig.

5, top middle) and STARSAC had very high model error (Fig.

5, top right). Thus, we may conclude that these algorithms are

on the verge of breaking down.

For homography estimation (Fig. 6, top left), ASCC broke

down earlier at around 40%, and ASKC also brokedown at 70%.

RECON also appears to breakdown at 70%, but this is an ar-

tificial breakdown point due to exceeding the 1 hour time limit

that we set (after which we resort to an all-data fit). In theory,

RECON should not have a breakdown point. At R = 0.9, SIM-

FIT was on the verge of breaking down, but this was usually

corrected by the model shift procedure.

Overall, we conclude that SIMFIT is the most robust

method to breakdown, being the only algorithm surveyed that

did not break down for either problem (other than RANSAC

with optimal threshold choice, which does not perform scale

selection, and perhaps RECON, given infinite time).

6.2.2 Scale Estimation Analysis

The estimated scale for line fitting is shown in (Fig. 5, top

middle) and(Fig. 6, top middle) for homography estimation.
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Fig. 4. Examples of the estimated SIMFIT line (blue) in comparison to the true line (green). The lines at ±3σ are also shown as a visual
representation of the estimated scale. (a) An accurate result at R = 0.85; (b) An accurate result at R = 0.8; (c) Example of multiple model
extraction, with 25% inliers for each of the three models; (d) A failure case, where the outlier distribution creates a false attractor encompassing
most of the data.

In the presence of outliers, we see that LMS+MSAC tends to

over-estimate scale, with a gradually increasing over-estimate

up until it reaches the breakdown point. This mirrors the per-

formance of the underlying σ̂MED estimator. RECON shows a

similar trend because it uses the same estimator, but because

the breakdown point is so much higher, this results in much

more accurate estimates, generally between 1-2 times the cor-

rect scale.

RANSAC EIS M was specifically designed to compen-

sate for the over-estimated scale of LMS+MSAC (Fan and

Pylvänäinen, 2008), but we see that it instead under-estimates

scale before reaching its breakdown point, after which it also

over-estimates the scale.

On the other hand, STARSAC has a large degree of variance

in the scale estimate. This is because the search granularity does

not permit precise scale estimates, and because the check for

model ‘consistency’ is based on a sub-optimal threshold choice.

We observed greater variability in performance on the homogra-

phy problem because the variance of model parameters becomes

increasingly less representative of ‘structural’ model variation

for higher dimensional models.

ASSC and ASKC tend to under-estimate scale (by about

50%) when they are operating well below the breakdown point

for line estimation, and then transition into over-estimating

scale as they near the breakdown point. ASKC is more sensitive

to this under-estimated scale, detecting only about 50% of the

inliers for low outlier ratios, despite finding a good model (Fig.

5, top right). This is because when the bandwidth is under-

estimated, it changes the normalization factor of the KDE such

that an under-estimated scale may have an equally high (or

higher) kernel density at the origin of residual space. This prob-

lem did not occur for homography estimation (Fig. 6, top left),

but only because the bandwidth was over-estimated, resulting

in over-estimated scale estimates (Fig. 6, top middle).

It should be noted that these problems with ASSC/ASKC

can be avoided by parameter tuning. We used the recommended

values from Wang et al. (2010), but different results are achieved

by changing the k-value in the kth order statistic, or the ch
parameter, or using a different robust scale estimator. For ex-

ample, using σ̂MED as suggested in Wang and Suter (2004a),

there was no difficulty in capturing all the inliers for low outlier

ratios, but a breakdown point was introduced at around 30%.

However, as evidenced by the tendency to over-estimate in one

case (Fig. 6, top middle) and under-estimate in another (Fig.

5, top middle), there is no clear way to tune these parameters

that works well for all cases.

Although SIMFIT began to slightly over-estimate scale for

the line fitting problem at R = 0.9, we see that overall, it was

the only algorithm that consistently and accurately found the

true scale. The final model shift procedure performed negli-

gible improvement for line fitting because the initial estimate

was quite good; however, we see that for the higher dimen-

sional problem of homography estimation where scale is slightly

over-estimated initially, the model shift procedure consistently

corrects this estimate to find the true value.

6.2.3 Model Error Analysis

For the line estimation problem, the reconstructed model error

(Fig. 5, top right) is fairly comparable for all methods up un-

til they reach their breakdown points, being consistently in the

range of 1-2 times the minimal error value. Nonetheless, SIM-

FIT performed the best, being the only algorithm that con-

sistently found the minimum error at all outlier ratios (after

model shifting).

For the higher dimensional homography estimation prob-

lem, the variation in model accuracy between algorithms is

more pronounced (Fig. 6, top right) . First, we note that even

RANSAC with optimal threshold tends to find a model with

about twice the minimal error. ASSC often has more than 4-5

times the minimal error, and LMS+MSAC often had 3-4 times

the minimal error. ASKC, STARSAC, RECON, and RANSAC

EIS M were all capable of finding less than 2 times the minimal

error, but this quickly increased as their breakdown points are

neared.

Interestingly, the core SIMFIT estimation actually became

more accurate as the outlier ratio increased, up until R = 0.9

where there was a significant increase in model error. Still, after

model shifting, SIMFIT consistently found the minimum error

at all outlier ratios.
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PERFORMANCE COMPARIONS FOR ROBUST ESTIMATION OF A 2D LINE
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Fig. 5. Performance comparisons for the robust estimation of a 2D line with scale estimation. See text for a full description of the experiment.

PERFORMANCE COMPARIONS FOR ROBUST ESTIMATION OF A PLANAR HOMOGRAPHY
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experiment.
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6.2.4 Performance Analysis

RANSAC EIS M, STARSAC, and ASKC do not attempt adap-

tive sampling, which means that runtime performance is inde-

pendent of outlier ratio. Although MSAC does adaptive scal-

ing, the overall performance of LMS+MSAC is dominated by

the LMS phase which requires a fixed number of iterations, and

because LMS breaks down for R > 0.5, MSAC is not able to

scale beyond this point. As a result, the number of unique fits

in LMS+MSAC is also effectively constant.

Lack of adaptive sampling is a notable disadvantage because

choosing the optimal number of iterations in advance requires

a priori knowledge the true outlier ratio. If too few iterations

are chosen, a breakdown point may be induced. If too many

iterations are chosen, performance for low outlier ratios will

suffer

It is interesting to note that, despite requiring nearly 100

times as many samples, STARSAC had almost the same perfor-

mance as ASKC (about 4 seconds) (Fig. 5, bottom right), due

to the costly objective function of ASKC that requires using

the KDE.

With ASSC, we see that adaptive sampling works up until

R = 0.4 (the breakdown point), and then scales back down (Fig.

6, bottom middle), despite that the most samples are needed for

high outlier ratios. This is because as soon as a model is found

with an over-estimated scale that can over-classify an inlier set,

it causes a reduction in the required number of iterations – de-

spite that this over-estimated model may be incorrect. In other

words, it introduces an artificial breakdown point, and this is

likely why adaptive sampling was later abandoned in ASKC.

SIMFIT and RECON are the only methods that consis-

tently succeed in adaptively scaling up the number of iterations.

Using K = 3, RECON often requires fewer model hypothesis

than SIMFIT or even RANSAC (at higher outlier ratios) – how-

ever, the large number of α-consistency checks leads to high

computational complexity, and runtime that is often several

orders of magnitude larger. For example, on the homography

estimation problem, the performance of SIMFIT ranges from

0.01 to 1 second, whereas RECON ranges from 1 second to

more than 1 hour (and sometimes needed to be aborted due to

time constraints) (Fig. 6, bottom right).

In contrast, we see that the performance of the core SIMFIT

routine (without model shift) was very similar to RANSAC, be-

ing the only algorithm that remains in the same order of mag-

nitude for all outlier ratios, with median performance about

2 times slower than RANSAC. For example, at R = 0.5,

RANSAC took 7.42 × 10−3 seconds, whereas SIMFIT took

1.37 × 10−2 seconds. The final model shift procedure added

roughly constant time, never more than 0.4 seconds.

6.3 Experiments on Real Data

Although we have so far demonstrated SIMFIT’s capabilities

on synthetic problem with higher outlier ratios and noise levels

than typical vision problems, it should be stressed that SIMFIT

is also competitive when applied to the lower outlier ratios and

noise levels of typical correspondence data. We demonstrate

this on another problem from computer vision: estimation of

the fundamental matrix from image correspondences.

The fundamental matrix is a more general constraint on

images than a homography because correspondences between

any two images must obey the epipolar constraint, regardless

of scene geometry. Given a set of corresponding image points

x̃i ↔ x̃′i, both homogeneous points in P2, the epipolar con-

straint (Hartley and Zisserman, 2004) dictates that the funda-

mental matrix F should satisfy

x̃′i
T
Fx̃i = 0, ∀i. (13)

Geometrically, this constraint represents the fact that each

point x̃i in the first image defines an epipolar line li = Fx̃i in

the second image, and the second point x̃′i should lie on this

epipolar line, so x̃′i ·li = 0. We performed minimal estimation of

the fundamental matrix from 6 points as described in Hartley

and Zisserman (2004), and refined from over-determined point

sets using bundle adjustment. Because the epipolar line con-

straint is a 1-dimensional constraint, we use k = 1 degrees of

freedom for the χ2-distribution.

It is tempting to measure error as the squared distance from

the right correspondence point x̃′i to the epipolar line li, as was

done in Torr and Murray (1997). However, this introduces a

bias by assuming that all of the noise is distributed on the

measurements of x̃′i rather than x̃i. Therefore, we prefer the

maximum likelihood (ML) method, which is to simultaneously

estimate the fundamental matrix and 3D structure points that

minimize reprojection error.

We automatically generated correspondences by finding

Harris corner points (Harris and Stephens, 1988) and matched

them by maximizing the normalized cross correlation (NCC)

with subpixel refinement. In order to assess the SSE from the

true inliers, as well as false positive (FP) and false negative

(FN) counts, we manually classified the true inliers with the

assistance of a helper script (see Fig. 7).

Fig. 7. Example close-up view of the script used for aiding a human
classifier in inspecting the automatically found correspondences. Cor-
responding points are indicated by the red cross-hairs, and the motion
vector field of nearby correspondences is also used to aid in spotting
outliers. In many cases more careful analysis such as measuring or
counting repeated patterns was also used.

In four out of the six image pairs (Table 1), SIMFIT had

the lowest error. ASKC was lower for ANL and Kitchen pairs,

but SIMFIT also did well here, and in a fraction of the time.

For example, in the Kitchen pair, ASKC had squared error of

546.07 after 7.39 seconds, whereas SIMFIT had squared error

of 677.18 after just 0.09 seconds.
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Table 1. Experimental results of fundamental matrix estimation from real image correspondences. Runtime is measured in seconds. False
positive (FP), false negative (FN), and SSE measures were computed based on the human classified inliers.

Image Pair Runtime SSE FP FN Scale

Table (N=922, R=0.43) SIMFIT 1.58 313.48 97 3 0.65
LMS+MSAC 22.13 368.37 64 6 1.27

RANSAC EIS M 20.02 448.66 22 74 0.31
ASSC 10.15 368.37 36 24 0.71
ASKC 11.92 368.37 32 37 0.71

STARSAC 542.68 87190.9 285 35 9.27
RECON 2.5 31875.3 84 75 4.67

ANL (N=1181, R=0.25) SIMFIT 0.84 1026.86 48 52 0.42
LMS+MSAC 26.42 1786.2 56 62 0.79

RANSAC EIS M 26.01 964.41 21 130 0.26
ASSC 1.37 1786.2 61 38 1.11
ASKC 15.54 925.43 34 84 0.70

STARSAC 713.48 15217.9 185 37 3.55
RECON 1.42 1588.02 49 40 0.92

Kitchen (N=608, R=0.03) SIMFIT 0.09 677.18 14 5 0.63
LMS+MSAC 13.32 654.17 4 68 0.49

RANSAC EIS M 12.81 615.63 2 135 0.26
ASSC 0.58 552.56 5 33 0.66
ASKC 7.39 546.07 4 80 0.53

STARSAC 343.88 1015.31 4 273 0.20
RECON 0.56 583.09 4 58 0.51

Heinlein (N=453, R=0.05) SIMFIT 0.12 274.45 0 8 0.43
LMS+MSAC 9.92 2521.75 1 62 0.50

RANSAC EIS M 9.54 2261.12 2 90 0.26
ASSC 0.31 2521.75 2 30 0.87
ASKC 5.52 371.565 0 43 0.62

STARSAC 256.79 13011.5 14 67 2.19
RECON 0.42 3640.52 0 32 1.27

Desk (N=1149, R=0.08) SIMFIT 0.63 1355.39 13 33 0.46
LMS+MSAC 24.42 1492.02 7 95 0.62

RANSAC EIS M 24.49 1400 3 187 0.27
ASSC 0.58 1492.02 7 89 0.69
ASKC 14.55 1454.49 6 107 0.69

STARSAC 663.11 37411.9 93 0 15
RECON 1.87 3278.3 16 107 1.22

Livingroom (N=1854, R=0.05) SIMFIT 0.32 587.20 26 6 0.41
LMS+MSAC 39.27 1124.86 8 166 0.47

RANSAC EIS M 38.84 666.51 3 265 0.22
ASSC 0.73 1124.86 11 72 0.66
ASKC 23.8143 710.847 9 136 0.49

STARSAC 1073.86 76076.2 53 287 3.55
RECON 5.27 1131.65 10 108 0.59

In general, one expects to find more inliers than actually ex-

ist when fitting the fundamental matrix because it is impossible

to detect outlier correspondences that randomly happen to lie

close to the epipolar line. Thus, our best indicator of algorithm

performance is the objective SSE measure, which corresponds

to negative log-likelihood.

SIMFIT had the fastest performance in 5 out of the 6 trials,

taking significantly less than 1 second for all problems except

Table, which had the highest outlier ratio, where it took 1.58

seconds. ASSC was often a close second in terms of perfor-

mance, although it took 10 seconds on Table. The runtime per-

formance of RECON was very reasonable due to the high inlier

ratios, usually taking under 2 seconds, except for Livingroom

where it took 5.27 seconds. STARSAC was by far the slowest

algorithm, because it always performs a computationally inten-

sive search through scale space to estimate model variances.

We do not have a ground truth reference for scale, but most

algorithms estimate σ in the range of 0.4 - 0.7 pixels for each

image pair, which is almost certaintly under-estimated. This is

to be expected, because each correspondence has three degrees

of freedom and four constraints, and thus there will always be a

significant degree of over-fitting which allows the triangulated

points to have lower error than the true points would. Thus, the

distribution of fitting errors will be more peaked than predicted
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by the χ2-distribution, leading to partially under-estimated

scale by all algorithms. Nonetheless, the model estimates are

still good.

7 Conclusions

RANSAC has proven to be an effective technique for overcom-

ing large outlier ratios when a good threshold can be chosen,

but it is sensitive to this choice. Several methods for augment-

ing RANSAC with automatic scale estimation have been previ-

ously proposed, but these methods tend to break down, or are

too slow for many practical applications.

To overcome these limitations we have proposed the novel

SIMFIT algorithm, which efficiently and reliably performs si-

multaneous scale estimation and model estimation without a

breakdown point. SIMFIT is simple to implement, requires no

new parameters (other than optional parameters for early ter-

mination), is reliable, and allows for adaptive sampling, keeping

the runtime on-par with RANSAC for low as well as high outlier

ratios.

Because SIMFIT is designed as a drop-in replacement for

RANSAC, it can also be incorporated into other algorithms that

use RANSAC as a subroutine. For example, the QDEGSAC

(Frahm and Pollefeys, 2006) algorithm was designed to cope

with quasi-degenerate data sets, and works by first running

RANSAC to find a model that explains the data, and then

estimating the codimension of the found model from the found

inliers, and finally searching the remaining data for additional

inliers that may provide the constraints necessary to make the

model non-degenerate, if necessary. Thus, the initial RANSAC

step can simply be replaced by SIMFIT to remove the need for

a priori knowledge of scale.

Although we have demonstrated SIMFIT on some specific

vision related problems, in addition to basic line fitting, we

would like to stress that it is not specifically designed just for

vision related tasks. We feel that the simplicity and generality

of the method make it applicable to robust estimation in many

other fields of science.

Finally, we note that there is room for future improvement

in deriving a more advanced version of the χ2-distribution that

accounts for increased peakedness due to over-fitting. Although

the difference would be less than negligible for any normal

model fitting problem (where errors are measured relative to

a quantity that becomes increasingly over-determined from ad-

ditional measurements), this would permit more accurate scale

estimation for the special case of fundamental matrix estima-

tion.
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